in

Coupling feeding activity, growth rates and molecular data shows dietetic needs of Ciona robusta (Ascidiacea, Phlebobranchia) in automatic culture plants

  • 1.

    Brunetti, R. et al. Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J. Zool. Syst. Evol. Res. 53, 186–193. https://doi.org/10.1111/jzs.12101 (2015).

    Article  Google Scholar 

  • 2.

    Lambert, C. C. Historical introduction, overview, and reproductive biology of the protochordates. Can. J. Zool. 83, 1–7. https://doi.org/10.1139/z04-160 (2005).

    Article  Google Scholar 

  • 3.

    Dybern, B. I. The distribution and salinity tolerance of Ciona intestinalis (L.) F. typica with special reference to the waters around Southern Scandinavia. Ophelia 4, 207–226. https://doi.org/10.1080/00785326.1967.10409621 (1967).

    Article  Google Scholar 

  • 4.

    Lambert, C. C. & Lambert, G. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Mar. Ecol. Progr. Ser. https://doi.org/10.3354/meps259145 (2003).

    Article  Google Scholar 

  • 5.

    Lambert, C. C. & Lambert, G. Non-indigenous ascidians in southern California harbors and marinas. Mar. Biol. 130, 675–688. https://doi.org/10.1007/s002270050289 (1998).

    Article  Google Scholar 

  • 6.

    Lundälv, T. & Christie, H. Comparative trends and ecological patterns of rocky subtidal communities in the Swedish and Norwegian Skagerrak area. Hydrobiologia 142, 71–80. https://doi.org/10.1007/BF00026748 (1987).

    Article  Google Scholar 

  • 7.

    Hoshino, Z. & Nishikawa, T. Taxonomic studies of Ciona intestinalis (L.) and its allies. Seto Mar. Biol. Lab. Pubbl. 30, 61–79 (1985).

    Article  Google Scholar 

  • 8.

    Mazzola, A. & Riggio, S. Fouling of Palermo harbour. 2nd contribution. Mem. Biol. Mar. Oceanogr. 6, 41–43 (1977).

    Google Scholar 

  • 9.

    Havenhand, J. N. & Svane, I. Roles of hydrodynamics and larval behaviour in determining spatial aggregation in the tunicate Ciona intestinalis. Mar. Ecol. Progr. Ser. 68, 271–276. https://doi.org/10.3354/meps068271 (1991).

    ADS  Article  Google Scholar 

  • 10.

    Koechlin, N. Settlement of epifauna of Spirographis spallanzani, Sycon ciliatum and Ciona intestinalis in the harbor of Lezardrieux. Cah. Biol. Mar. 18, 325–337 (1977).

    Google Scholar 

  • 11.

    Zupo, V., Buia, M. C., Gambi, M. C., Lorenti, M. & Procaccini, G. Temporal variations in the spatial distribution of shoot density in a Posidonia oceanica meadow and patterns of genetic diversity. Mar. Ecol. 27, 328–338. https://doi.org/10.1111/j.1439-0485.2006.00133.x (2006).

    ADS  Article  Google Scholar 

  • 12.

    Keough, M. J. Patterns of recruitment of sessile invertebrates in two subtidal habitats. J. Exp. Mar. Biol. Ecol. 66, 213–245. https://doi.org/10.1016/0022-0981(83)90162-4 (1983).

    Article  Google Scholar 

  • 13.

    Cayer, D., MacNeil, M. & Bagnall, A. G. Tunicate fouling in Nova Scotia aquaculture: a new development. J. Shellfish Res. 18, 327 (1999).

    Google Scholar 

  • 14.

    de Oliveira Marins, F., da Silva Oliveira, C., Maciel, N. M. V. & Skinner, L. F. Reinclusion of Ciona intestinalis (Ascidiacea: Cionidae) in Brazil—a methodological view. Mar. Biodivers. Rec. https://doi.org/10.1017/S175526720900116X (2009).

    Article  Google Scholar 

  • 15.

    Svane, I. & Lundälv, T. Reproductive patterns and population dynamics of Ascidia mentula O.F. Müller on the Swedish west coast. J. Exp. Mar. Biol. Ecol. 50, 163–182. https://doi.org/10.1016/0022-0981(81)90048-4 (1981).

    Article  Google Scholar 

  • 16.

    Svane, I. & Lundalv, T. Persistence stability in ascidian populations: long-term population dynamics and reproductive pattern of Pyura tessellata (forbes) in gullmarfjorden on the swedish west coast. Sarsia 67, 249–257. https://doi.org/10.1016/0022-0981(81)90048-4 (1982).

    Article  Google Scholar 

  • 17.

    Svane, I. Ascidian reproductive patterns related to long-term population dynamics. Sarsia 68, 249–255. https://doi.org/10.1080/00364827.1982.10421339 (1983).

    Article  Google Scholar 

  • 18.

    Lambert, G. The general ecology and growth of a solitary ascidian, Corella willmeriana. Biol. Bull. 135, 296–307. https://doi.org/10.2307/1539783 (1968).

    Article  PubMed  Google Scholar 

  • 19.

    Goodbody, I. The biology of Ascidia nigra (Savigny). 11. The development and survival of young ascidians. Biol. Bull. 124, 31–44. https://doi.org/10.2307/1539566 (1963).

    Article  Google Scholar 

  • 20.

    Goodbody, I. The Biology of Ascidia nigra (Savigny). I. Survival and mortality in an adult population. Biol. Bull. 122, 40–51. https://doi.org/10.2307/1539320 (1962).

    Article  Google Scholar 

  • 21.

    Sato, A., Satoh, N. & Bishop, J. D. D. Field identification of ‘types’ A and B of the ascidian Ciona intestinalis in a region of sympatry. Mar. Biol. 159, 1611–1619. https://doi.org/10.1007/s00227-012-1898-5 (2012).

    Article  Google Scholar 

  • 22.

    Harada, Y. et al. Mechanism of self-sterility in a hermaphroditic chordate. Science 320, 548–550. https://doi.org/10.1126/science.1152488 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 23.

    Sawada, H., Morita, M. & Iwano, M. Self/non-self recognition mechanisms in sexual reproduction: New insight into the self-incompatibility system shared by flowering plants and hermaphroditic animals. Biochem. Biophys. Res. Commun. 450, 1142–1148. https://doi.org/10.1016/j.bbrc.2014.05.099 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Dehal, P. et al. The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298, 2157–2167. https://doi.org/10.1126/science.1080049 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 25.

    Sasaki, A., Miyamoto, Y., Satou, Y., Satoh, N. & Ogasawara, M. Novel endostyle-specific genes in the ascidian Ciona intestinalis. Zool. Sci. 20, 1025–1030. https://doi.org/10.2108/zsj.20.1025 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Joly, J. S. et al. Culture of Ciona intestinalis in closed systems. Dev. Dyn. 236, 1832–1840. https://doi.org/10.1002/dvdy.21124 (2007).

    Article  PubMed  Google Scholar 

  • 27.

    Gallo, A. & Tosti, E. Adverse effect of antifouling compounds on the reproductive mechanisms of the ascidian Ciona intestinalis. Mar. Drugs 11, 3554–3568. https://doi.org/10.3390/md11093554 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Corbo, J. C., Di Gregorio, A. & Levine, M. The Ascidian as a model organism in developmental and evolutionary biology. Cell 106, 535–538. https://doi.org/10.1016/s0092-8674(01)00481-0 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Stolfi, A. & Christiaen, L. Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 192(1), 55–66. https://doi.org/10.1534/genetics.112.140590 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Dahlberg, C. et al. Refining the Ciona intestinalis model of central nervous system regeneration. PLoS ONE 4(2), e4458. https://doi.org/10.1371/journal.pone.0004458 (2009).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Bollner, T., Beesley, P. W. & Thorndyke, M. C. Distribution of GABA-like immunoreactivity during post-metamorphic development and regeneration of the central nervous system in the ascidian Ciona intestinalis. Cell Tissue Res. 272, 553–561. https://doi.org/10.1007/BF00318562 (1993).

    CAS  Article  Google Scholar 

  • 32.

    Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656. https://doi.org/10.1073/pnas.202320599 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 33.

    Carver, C. E., Mallet, A. L. & Vercaemer, B. Biological synopsis of the solitary tunicate Ciona intestinalis. Can. Man. Rep. Fish. Aquat. Sci. 2746 (2006).

  • 34.

    Fiala-Médioni, A. Filter-feeding ethology of benthic invertebrates (ascidians). IV. Pumping rate, filtration rate, filtration efficiency. Mar. Biol. 48, 243–249. https://doi.org/10.1007/BF00397151 (1978).

    Article  Google Scholar 

  • 35.

    Hoxha, T. et al. Comparative feeding rates of native and invasive ascidians. Mar. Pollut. Bull. 135, 1067–1071. https://doi.org/10.1016/j.marpolbul.2018.08.039 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Petersen, J. K., Mayer, S. & Knudsen, M. Å. Beat frequency of cilia in the branchial basket of the ascidian Ciona intestinalis in relation to temperature and algal cell concentration. Mar. Biol. 133, 185–192. https://doi.org/10.1007/s002270050457 (1999).

    Article  Google Scholar 

  • 37.

    Millar, R. H. The biology of ascidians. Adv. Mar. Biol. 9, 1–100 (1971).

    ADS  Article  Google Scholar 

  • 38.

    Thomas, N. W. Mucus-secreting cells from the alimentary canal of Ciona intestinalis. J. Mar. Biol. Assoc. U. K. 50, 429–438. https://doi.org/10.1017/S0025315400004628 (1970).

    Article  Google Scholar 

  • 39.

    Flood, P. R. & Fiala-Medioni, A. Ultrastructure and histochemistry of the food trapping mucous film in benthic filter-feeders (Ascidians). Acta Zool. 62, 53–65. https://doi.org/10.1111/j.1463-6395.1981.tb00616.x (1981).

    Article  Google Scholar 

  • 40.

    Randløv, A. & Riisgard, H. U. Efficiency of particle retention and filtration rate in four species of ascidians. Mar. Ecol. Progr. Ser. 11, 89–103 (1979).

    Google Scholar 

  • 41.

    Petersen, J. K. & Riisgard, H. U. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser. 88, 9–17 (1992).

    ADS  Article  Google Scholar 

  • 42.

    Lumare, F., Di Muro, P., Tenderini, L. & Zupo, V. Experimental intensive culture of Penaeus monodon in the cold-temperate climate of the North-East coast of Italy (a fishery ‘valle’ of the River Po Delta). Aquaculture 113, 231–241. https://doi.org/10.1016/0044-8486(93)90476-F (1993).

    Article  Google Scholar 

  • 43.

    Mutalipassi, M., Di Natale, M., Mazzella, V. & Zupo, V. Automated culture of aquatic model organisms: shrimp larvae husbandry for the needs of research and aquaculture. Animal 12, 155–163. https://doi.org/10.1017/S1751731117000908 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Armsworthy, S. L., MacDonald, B. A. & Ward, J. E. Feeding activity, absorption efficiency and suspension feeding processes in the ascidian, Halocynthia pyriformis (Stolidobranchia: Ascidiacea): responses to variations in diet quantity and quality. J. Exp. Mar. Biol. Ecol. 260, 41–69. https://doi.org/10.1016/S0022-0981(01)00238-6 (2001).

    Article  PubMed  Google Scholar 

  • 45.

    Coughlan, J. The estimation of filtering rate from the clearance of suspensions. Mar. Biol. 2, 356–358. https://doi.org/10.1007/BF00355716 (1969).

    Article  Google Scholar 

  • 46.

    Pascoe, P. L., Parry, H. E. & Hawkins, A. J. S. Dynamic filter-feeding responses in fouling organisms. Aquat. Biol. 1, 177–185. https://doi.org/10.3354/ab00022 (2007).

    CAS  Article  Google Scholar 

  • 47.

    Petersen, J. K. Ascidian suspension feeding. J. Exp. Mar. Biol. Ecol. 342, 127–137. https://doi.org/10.1016/j.jembe.2006.10.023 (2007).

    Article  Google Scholar 

  • 48.

    Robbins, I. J. The effects of body size, temperature, and suspension density on the filtration and ingestion of inorganic particulate suspensions by ascidians. J. Exp. Mar. Biol. Ecol. 70, 65–78. https://doi.org/10.1016/0022-0981(83)90149-1 (1983).

    Article  Google Scholar 

  • 49.

    Varrella, S. et al. Toxic diatom aldehydes affect defence gene networks in sea urchins. PLoS ONE 11, e0149734. https://doi.org/10.1371/journal.pone.0149734 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Varrella, S. et al. First morphological and molecular evidence of the negative impact of diatom-derived hydroxyacids on the sea urchin Paracentrotus lividus. Toxicol. Sci. 151, 419–433. https://doi.org/10.1093/toxsci/kfw053 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Jacobi, Y., Yahel, G. & Shenkar, N. Efficient filtration of micron and submicron particles by ascidians from oligotrophic waters. Limnol. Oceanogr. 63, S267–S279. https://doi.org/10.1002/lno.10736 (2018).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Robbins, I. J. The regulation of ingestion rate, at high suspended particulate concentrations, by some phleobranchiate ascidians. J. Exp. Mar. Biol. Ecol. 82, 1–10. https://doi.org/10.1016/0022-0981(84)90135-7 (1984).

    Article  Google Scholar 

  • 53.

    Ogasawara, M. et al. Gene expression profiles in young adult Ciona intestinalis. Dev. Genes Evol. 212, 173–185. https://doi.org/10.1007/s00427-002-0230-7 (2002).

    Article  PubMed  Google Scholar 

  • 54.

    Hendrickson, C. et al. Culture of adult ascidians and ascidian genetics. Methods Cell Biol. 143–170, 2004. https://doi.org/10.1016/S0091-679X(04)74007-8 (2004).

    Article  Google Scholar 

  • 55.

    Petersen, S. Feeding response to fish feed diets in Ciona intestinalis: implications for IMTA. IMTA. MSc thesis. University of Bergen (2016).

  • 56.

    Knuckey, R. M., Brown, M. R., Robert, R. & Frampton, D. M. F. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult. Eng. 35, 300–313. https://doi.org/10.1016/j.aquaeng.2006.04.001 (2006).

    Article  Google Scholar 

  • 57.

    Raniello, R., Iannicelli, M. M., Nappo, M., Avila, C. & Zupo, V. Production of Cocconeis neothumensis (Bacillariophyceae) biomass in batch cultures and bioreactors for biotechnological applications: light and nutrient requirements. J. Appl. Phycol. 19, 383–391. https://doi.org/10.1007/s10811-006-9145-4 (2007).

    CAS  Article  Google Scholar 

  • 58.

    Nappo, M. et al. Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. J. Appl. Phycol. 21, 295–306. https://doi.org/10.1007/s10811-008-9367-8 (2009).

    CAS  Article  Google Scholar 

  • 59.

    Ruocco, N. et al. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7. Aquat. Toxicol. 176, 128–140 (2016).

    CAS  Article  Google Scholar 

  • 60.

    Ruocco, N., Costantini, M. & Santella, L. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos. Sci. Rep. 6, 1–12. https://doi.org/10.1038/srep32157 (2016).

    CAS  Article  Google Scholar 

  • 61.

    Sigsgaard, S. J., Petersen, J. K. & Iversen, J. J. L. Relationship between specific dynamic action and food quality in the solitary ascidian Ciona intestinalis. Mar. Biol. 143, 1143–1149. https://doi.org/10.1007/s00227-003-1164-y (2003).

    Article  Google Scholar 

  • 62.

    Liu, L. et al. Ciona intestinalis as an emerging model organism: its regeneration under controlled conditions and methodology for egg dechorionation. J. Zhejiang Univ. Sci. B 7, 467–474. https://doi.org/10.1631/jzus.2006.B0467 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Costantini, S. et al. Evaluating the effects of an organic extract from the mediterranean sponge Geodia cydonium on human breast cancer cell lines. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18102112 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Costantini, S. et al. Anti-inflammatory effects of a methanol extract from the marine sponge Geodia cydonium on the human breast cancer MCF-7 cell line. Mediators Inflamm. https://doi.org/10.1155/2015/204975 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Ruocco, N. et al. High-quality RNA extraction from the sea urchin Paracentrotus lividus embryos. PLoS ONE 12, e0172171. https://doi.org/10.1371/journal.pone.0172171 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Fujikawa, T., Munakata, T., Kondo, S. I., Satoh, N. & Wada, S. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress. Cell Stress Chaperones 15, 193–204. https://doi.org/10.1007/s12192-009-0133-x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 67.

    Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45e–445. https://doi.org/10.1093/nar/29.9.e45 (2001).

    Article  Google Scholar 

  • 68.

    Pfaffl, M. W. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, 36e–336. https://doi.org/10.1093/nar/30.9.e36 (2002).

    Article  Google Scholar 

  • 69.

    Ginzburg, L. R. The theory of population dynamics: I. Back to first principles. J. Theor. Biol. 122, 385–399. https://doi.org/10.1016/S0022-5193(86)80180-1 (1986).

    MathSciNet  Article  Google Scholar 

  • 70.

    Turchin, P. Does population ecology have general laws?. Oikos 94, 17–26. https://doi.org/10.1034/j.1600-0706.2001.11310.x (2001).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture