in

The behaviour of sea snakes (Emydocephalus annulatus) shifts with the tides

  • 1.

    Wikelski, M. Evolution of body size in Galapagos marine iguanas. Proc. R. Soc. B 272, 1985–1993 (2005).

    PubMed  Google Scholar 

  • 2.

    Reidenberg, J. S. Anatomical adaptations of aquatic mammals. Anat. Rec. 290, 507–513 (2007).

    Google Scholar 

  • 3.

    Aubret, F., Bonnet, X. & Shine, R. The role of adaptive plasticity in a major evolutionary transition: early aquatic experience affects locomotor performance of terrestrial snakes. Funct. Ecol. 21, 1154–1161 (2007).

    Google Scholar 

  • 4.

    Palmer, J. D. The biological rhythms and clocks of intertidal animals (Oxford University Press, Oxford, 1995).

    Google Scholar 

  • 5.

    Hindle, A. G., Rosen, D. A. & Trites, A. W. Swimming depth and ocean currents affect transit costs in Steller sea lions Eumetopias jubatus. Aquat. Biol. 10, 139–148 (2010).

    Google Scholar 

  • 6.

    Frazer, N. B. Effect of tidal cycles on loggerhead sea turtles (Caretta caretta) emerging from the sea. Copeia 1983, 516–519 (1983).

    Google Scholar 

  • 7.

    Hay, D. E. Tidal influence on spawning time of Pacific Herring (Clupea harengus pallasi). Can. J. Fish. Aquat. Sci. 47, 2390–2401 (1990).

    Google Scholar 

  • 8.

    Gibson, R. N. Tidally-synchronised behaviour in marine fishes. In Rhythms in fishes (ed. Ali, M. A.) 63–81 (Springer, Berlin, 1992).

    Google Scholar 

  • 9.

    Bernard, I. et al. In situ spawning in a marine broadcast spawner, the Pacific oyster Crassostrea gigas: timing and environmental triggers. Limnol. Oceanogr. 61, 635–647 (2016).

    ADS  Google Scholar 

  • 10.

    Leite-Castro, L. V. et al. Reproductive biology of the sea cucumber Holothuria grisea in Brazil: importance of social and environmental factors in breeding coordination. Mar. Biol. 163, 67 (2016).

    Google Scholar 

  • 11.

    Collin, R., Kerr, K., Contolini, G. & Ochoa, I. Reproductive cycles in tropical intertidal gastropods are timed around tidal amplitude cycles. Ecol. Evol. 7, 5977–5991 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Reinert, H. K. Habitat variation within sympatric snake populations. Ecology 65, 1673–1682 (1984).

    Google Scholar 

  • 13.

    Reinert, H. K. & Zappalorti, R. T. Timber rattlesnakes (Crotalus horridus) of the Pine Barrens: their movement patterns and habitat preference. Copeia 1988, 964–978 (1988).

    Google Scholar 

  • 14.

    Bauder, J. M. et al. Multi-level, multi-scale habitat selection by a wide-ranging, federally threatened snake. Landsc. Ecol. 33, 743–763 (2018).

    Google Scholar 

  • 15.

    Cook, T. R., Bonnet, X., Fauvel, T., Shine, R. & Brischoux, F. Foraging behaviour and energy budgets of sea snakes from New Caledonia: insights from implanted data-loggers. J. Zool. 298, 82–93 (2016).

    Google Scholar 

  • 16.

    Udyawer, V., Read, M., Hamann, M., Simpfendorfer, C. A. & Heupel, M. R. Effects of environmental variables on the movement and space use of coastal sea snakes over multiple temporal scales. J. Exp. Mar. Biol. Ecol. 473, 26–34 (2015).

    Google Scholar 

  • 17.

    Udyawer, V., Simpfendorfer, C. A. & Heupel, M. R. Diel patterns in three-dimensional use of space by sea snakes. Anim. Biotelemetry 3, 29 (2015).

    Google Scholar 

  • 18.

    Udyawer, V., Simpfendorfer, C. A., Read, M., Hamann, M. & Heupel, M. R. Exploring habitat selection in sea snakes using passive acoustic monitoring and Bayesian hierarchical models. Mar. Ecol. Prog. Ser. 546, 249–262 (2016).

    ADS  Google Scholar 

  • 19.

    Udyawer, V., Read, M., Hamann, M., Heupel, M. R. & Simpfendorfer, C. A. Importance of shallow tidal habitats as refugia from trawl fishing for sea snakes. J. Herpetol. 50, 527–533 (2016).

    Google Scholar 

  • 20.

    Udyawer, V., Simpfendorfer, C. A., Heupel, M. R. & Clark, T. D. Temporal and spatial activity-associated energy partitioning in free-swimming sea snakes. Funct. Ecol. 31, 1739–1749 (2017).

    Google Scholar 

  • 21.

    Kerford, M. R., Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Danger on the rise: diurnal tidal state mediates an exchange of food for safety by the bar-bellied sea snake Hydrophis elegans. Mar. Ecol. Prog. Ser. 358, 289–294 (2008).

    ADS  Google Scholar 

  • 22.

    Wirsing, A. J. & Heithaus, M. R. Olive-headed sea snakes Disteria major shift seagrass microhabitats to avoid shark predation. Mar. Ecol. Prog. Ser. 387, 287–293 (2009).

    ADS  Google Scholar 

  • 23.

    Shetty, S. & Shine, R. Activity patterns of yellow-lipped sea kraits (Laticauda colubrina) on a Fijian island. Copeia 2002, 77–85 (2002).

    Google Scholar 

  • 24.

    Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).

    ADS  Google Scholar 

  • 25.

    Shine, R. All at sea: aquatic life modifies mate-recognition modalities in sea snakes (Emydocephalus annulatus, Hydrophiidae). Behav. Ecol. Sociobiol. 57, 591–598 (2005).

    Google Scholar 

  • 26.

    Shine, R., Shine, T. & Shine, B. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): the effects of sex, body size, and colour pattern. Biol. J. Linn. Soc. 80, 1–10 (2003).

    Google Scholar 

  • 27.

    Rezaie-Atagholipour, M., Riyahi-Bakhtiari, A. & Sajjadi, M. Feeding habits of the annulated sea snake, Hydrophis cyanocinctus, in the Persian Gulf. J. Herpetol. 47, 328–330 (2013).

    Google Scholar 

  • 28.

    Shine, R., Brischoux, F. & Pile, A. A seasnake’s colour affects its susceptibility to algal fouling. Proc. R. Soc. B 277, 2459–2464 (2010).

    CAS  PubMed  Google Scholar 

  • 29.

    Shine, R., Goiran, C., Shine, T., Fauvel, T. & Brischoux, F. Phenotypic divergence between seasnake (Emydocephalus annulatus) populations from adjacent bays of the New Caledonian Lagoon. Biol. J. Linn. Soc. 107, 824–832 (2012).

    Google Scholar 

  • 30.

    Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Heatwole, H. Sea snakes. Australian natural history series 2nd edn. (University of New South Wales Press, Randwick, 1999).

    Google Scholar 

  • 32.

    Lukoschek, V., Beger, M., Ceccarelli, D., Richards, Z. & Pratchett, M. Enigmatic declines of Australia’s sea snakes from a biodiversity hotspot. Biol. Conserv. 166, 191–202 (2013).

    Google Scholar 

  • 33.

    Goiran, C. & Shine, R. Decline in sea snake abundance on a protected coral reef system in the New Caledonian Lagoon. Coral Reefs 32, 281–284 (2013).

    ADS  Google Scholar 

  • 34.

    Udyawer, V. et al. Future directions in marine snake research and management. Front. Mar. Sci. 5, 399 (2018).

    Google Scholar 

  • 35.

    Harrison, H. B. et al. Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs 38, 713–719 (2019).

    ADS  Google Scholar 

  • 36.

    Richardson, L. E., Graham, N. A., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).

    ADS  Google Scholar 

  • 37.

    Mitrovich, M. J., Diffendorfer, J. E., Brehme, C. S. & Fisher, R. N. Effects of urbanization and habitat composition on site occupancy of two snake species using regional monitoring data from southern California. Glob. Ecol. Conserv. 15, e00427 (2018).

    Google Scholar 

  • 38.

    Ineich, I. The sea snakes of New Caledonia (Elapidae, Hydrophiinae). In Compendium of marine species from New Caledonia (eds Payri, C. & Richer de Forges, B.) 403–410 (Institut de Recherche pour le Développement, Marseille, 2007).

    Google Scholar 

  • 39.

    Goiran, C., Bustamante, P. & Shine, R. Industrial melanism in the seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).

    CAS  PubMed  Google Scholar 

  • 40.

    Shine, R., Bonnet, X., Elphick, M. & Barrott, E. A novel foraging mode in snakes: browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Funct. Ecol. 18, 16–24 (2004).

    Google Scholar 

  • 41.

    Avolio, C., Shine, R. & Pile, A. J. The adaptive significance of sexually dimorphic scale rugosity in sea snakes. Am. Nat. 167, 728–738 (2006).

    PubMed  Google Scholar 

  • 42.

    Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of seasnakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Coupling feeding activity, growth rates and molecular data shows dietetic needs of Ciona robusta (Ascidiacea, Phlebobranchia) in automatic culture plants

    Effects of substratum and depth on benthic harmful dinoflagellate assemblages