in

The behaviour of sea snakes (Emydocephalus annulatus) shifts with the tides

  • 1.

    Wikelski, M. Evolution of body size in Galapagos marine iguanas. Proc. R. Soc. B 272, 1985–1993 (2005).

    PubMed  Google Scholar 

  • 2.

    Reidenberg, J. S. Anatomical adaptations of aquatic mammals. Anat. Rec. 290, 507–513 (2007).

    Google Scholar 

  • 3.

    Aubret, F., Bonnet, X. & Shine, R. The role of adaptive plasticity in a major evolutionary transition: early aquatic experience affects locomotor performance of terrestrial snakes. Funct. Ecol. 21, 1154–1161 (2007).

    Google Scholar 

  • 4.

    Palmer, J. D. The biological rhythms and clocks of intertidal animals (Oxford University Press, Oxford, 1995).

    Google Scholar 

  • 5.

    Hindle, A. G., Rosen, D. A. & Trites, A. W. Swimming depth and ocean currents affect transit costs in Steller sea lions Eumetopias jubatus. Aquat. Biol. 10, 139–148 (2010).

    Google Scholar 

  • 6.

    Frazer, N. B. Effect of tidal cycles on loggerhead sea turtles (Caretta caretta) emerging from the sea. Copeia 1983, 516–519 (1983).

    Google Scholar 

  • 7.

    Hay, D. E. Tidal influence on spawning time of Pacific Herring (Clupea harengus pallasi). Can. J. Fish. Aquat. Sci. 47, 2390–2401 (1990).

    Google Scholar 

  • 8.

    Gibson, R. N. Tidally-synchronised behaviour in marine fishes. In Rhythms in fishes (ed. Ali, M. A.) 63–81 (Springer, Berlin, 1992).

    Google Scholar 

  • 9.

    Bernard, I. et al. In situ spawning in a marine broadcast spawner, the Pacific oyster Crassostrea gigas: timing and environmental triggers. Limnol. Oceanogr. 61, 635–647 (2016).

    ADS  Google Scholar 

  • 10.

    Leite-Castro, L. V. et al. Reproductive biology of the sea cucumber Holothuria grisea in Brazil: importance of social and environmental factors in breeding coordination. Mar. Biol. 163, 67 (2016).

    Google Scholar 

  • 11.

    Collin, R., Kerr, K., Contolini, G. & Ochoa, I. Reproductive cycles in tropical intertidal gastropods are timed around tidal amplitude cycles. Ecol. Evol. 7, 5977–5991 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Reinert, H. K. Habitat variation within sympatric snake populations. Ecology 65, 1673–1682 (1984).

    Google Scholar 

  • 13.

    Reinert, H. K. & Zappalorti, R. T. Timber rattlesnakes (Crotalus horridus) of the Pine Barrens: their movement patterns and habitat preference. Copeia 1988, 964–978 (1988).

    Google Scholar 

  • 14.

    Bauder, J. M. et al. Multi-level, multi-scale habitat selection by a wide-ranging, federally threatened snake. Landsc. Ecol. 33, 743–763 (2018).

    Google Scholar 

  • 15.

    Cook, T. R., Bonnet, X., Fauvel, T., Shine, R. & Brischoux, F. Foraging behaviour and energy budgets of sea snakes from New Caledonia: insights from implanted data-loggers. J. Zool. 298, 82–93 (2016).

    Google Scholar 

  • 16.

    Udyawer, V., Read, M., Hamann, M., Simpfendorfer, C. A. & Heupel, M. R. Effects of environmental variables on the movement and space use of coastal sea snakes over multiple temporal scales. J. Exp. Mar. Biol. Ecol. 473, 26–34 (2015).

    Google Scholar 

  • 17.

    Udyawer, V., Simpfendorfer, C. A. & Heupel, M. R. Diel patterns in three-dimensional use of space by sea snakes. Anim. Biotelemetry 3, 29 (2015).

    Google Scholar 

  • 18.

    Udyawer, V., Simpfendorfer, C. A., Read, M., Hamann, M. & Heupel, M. R. Exploring habitat selection in sea snakes using passive acoustic monitoring and Bayesian hierarchical models. Mar. Ecol. Prog. Ser. 546, 249–262 (2016).

    ADS  Google Scholar 

  • 19.

    Udyawer, V., Read, M., Hamann, M., Heupel, M. R. & Simpfendorfer, C. A. Importance of shallow tidal habitats as refugia from trawl fishing for sea snakes. J. Herpetol. 50, 527–533 (2016).

    Google Scholar 

  • 20.

    Udyawer, V., Simpfendorfer, C. A., Heupel, M. R. & Clark, T. D. Temporal and spatial activity-associated energy partitioning in free-swimming sea snakes. Funct. Ecol. 31, 1739–1749 (2017).

    Google Scholar 

  • 21.

    Kerford, M. R., Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Danger on the rise: diurnal tidal state mediates an exchange of food for safety by the bar-bellied sea snake Hydrophis elegans. Mar. Ecol. Prog. Ser. 358, 289–294 (2008).

    ADS  Google Scholar 

  • 22.

    Wirsing, A. J. & Heithaus, M. R. Olive-headed sea snakes Disteria major shift seagrass microhabitats to avoid shark predation. Mar. Ecol. Prog. Ser. 387, 287–293 (2009).

    ADS  Google Scholar 

  • 23.

    Shetty, S. & Shine, R. Activity patterns of yellow-lipped sea kraits (Laticauda colubrina) on a Fijian island. Copeia 2002, 77–85 (2002).

    Google Scholar 

  • 24.

    Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).

    ADS  Google Scholar 

  • 25.

    Shine, R. All at sea: aquatic life modifies mate-recognition modalities in sea snakes (Emydocephalus annulatus, Hydrophiidae). Behav. Ecol. Sociobiol. 57, 591–598 (2005).

    Google Scholar 

  • 26.

    Shine, R., Shine, T. & Shine, B. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): the effects of sex, body size, and colour pattern. Biol. J. Linn. Soc. 80, 1–10 (2003).

    Google Scholar 

  • 27.

    Rezaie-Atagholipour, M., Riyahi-Bakhtiari, A. & Sajjadi, M. Feeding habits of the annulated sea snake, Hydrophis cyanocinctus, in the Persian Gulf. J. Herpetol. 47, 328–330 (2013).

    Google Scholar 

  • 28.

    Shine, R., Brischoux, F. & Pile, A. A seasnake’s colour affects its susceptibility to algal fouling. Proc. R. Soc. B 277, 2459–2464 (2010).

    CAS  PubMed  Google Scholar 

  • 29.

    Shine, R., Goiran, C., Shine, T., Fauvel, T. & Brischoux, F. Phenotypic divergence between seasnake (Emydocephalus annulatus) populations from adjacent bays of the New Caledonian Lagoon. Biol. J. Linn. Soc. 107, 824–832 (2012).

    Google Scholar 

  • 30.

    Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Heatwole, H. Sea snakes. Australian natural history series 2nd edn. (University of New South Wales Press, Randwick, 1999).

    Google Scholar 

  • 32.

    Lukoschek, V., Beger, M., Ceccarelli, D., Richards, Z. & Pratchett, M. Enigmatic declines of Australia’s sea snakes from a biodiversity hotspot. Biol. Conserv. 166, 191–202 (2013).

    Google Scholar 

  • 33.

    Goiran, C. & Shine, R. Decline in sea snake abundance on a protected coral reef system in the New Caledonian Lagoon. Coral Reefs 32, 281–284 (2013).

    ADS  Google Scholar 

  • 34.

    Udyawer, V. et al. Future directions in marine snake research and management. Front. Mar. Sci. 5, 399 (2018).

    Google Scholar 

  • 35.

    Harrison, H. B. et al. Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs 38, 713–719 (2019).

    ADS  Google Scholar 

  • 36.

    Richardson, L. E., Graham, N. A., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).

    ADS  Google Scholar 

  • 37.

    Mitrovich, M. J., Diffendorfer, J. E., Brehme, C. S. & Fisher, R. N. Effects of urbanization and habitat composition on site occupancy of two snake species using regional monitoring data from southern California. Glob. Ecol. Conserv. 15, e00427 (2018).

    Google Scholar 

  • 38.

    Ineich, I. The sea snakes of New Caledonia (Elapidae, Hydrophiinae). In Compendium of marine species from New Caledonia (eds Payri, C. & Richer de Forges, B.) 403–410 (Institut de Recherche pour le Développement, Marseille, 2007).

    Google Scholar 

  • 39.

    Goiran, C., Bustamante, P. & Shine, R. Industrial melanism in the seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).

    CAS  PubMed  Google Scholar 

  • 40.

    Shine, R., Bonnet, X., Elphick, M. & Barrott, E. A novel foraging mode in snakes: browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Funct. Ecol. 18, 16–24 (2004).

    Google Scholar 

  • 41.

    Avolio, C., Shine, R. & Pile, A. J. The adaptive significance of sexually dimorphic scale rugosity in sea snakes. Am. Nat. 167, 728–738 (2006).

    PubMed  Google Scholar 

  • 42.

    Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of seasnakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture