in

Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation

  • 1.

    Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164, 80–99 (2013).

    CAS  Google Scholar 

  • 2.

    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

    CAS  Google Scholar 

  • 4.

    Haynes, R. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 85, 221–268 (2005).

    CAS  Google Scholar 

  • 5.

    Banger, K., Toor, G., Biswas, A., Sidhu, S. & Sudhir, K. Soil organic carbon fractions after 16 years of applications of fertilizers and organic manure in a Typic Rhodalfs in semi-arid tropics. Nutr. Cycl. Agroecosyst. 86, 391–399 (2010).

    Google Scholar 

  • 6.

    Blair, G. J., Lefroy, R. D. & Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46, 1459–1466 (1995).

    Google Scholar 

  • 7.

    Kumar, K., Goh, K. Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. In Advances in Agronomy, Vol. 68, 197–319 (Elsevier , Amsterdam, 1999).

  • 8.

    Jiang, D., Zhuang, D. & Huang, Y. Crop residues as an energy feedstock: Availability and sustainability. In Sustainable Bioenergy Production, 236–249 (CRC Press, Boca Raton, 2014).

  • 9.

    Rengel, Z. The role of crop residues in improving soil fertility. In Nutrient Cycling in Terrestrial Ecosystems, 183–214 (Springer, Berlin, 2007).

  • 10.

    Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B. & Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 165, 277–304 (2000).

    ADS  CAS  Google Scholar 

  • 11.

    Xiao, Y., Huang, Z. & Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 82, 381–389 (2015).

    Google Scholar 

  • 12.

    Li, S. et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil Till. Res. 155, 289–297 (2016).

    Google Scholar 

  • 13.

    Allison, S. D., Czimczik, C. I. & Treseder, K. K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob. Change Biol. 14, 1156–1168 (2008).

    ADS  Google Scholar 

  • 14.

    Chen, J. et al. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Glob. Change Biol. 23, 1328–1337 (2017).

    ADS  Google Scholar 

  • 15.

    Allison, S. D., Gartner, T. B., Mack, M. C., McGuire, K. & Treseder, K. Nitrogen alters carbon dynamics during early succession in boreal forest. Soil Biol. Biochem. 42, 1157–1164 (2010).

    CAS  Google Scholar 

  • 16.

    Jian, S. et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biol. Biochem. 101, 32–43 (2016).

    CAS  Google Scholar 

  • 17.

    Veres, Z. et al. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Appl. Soil Ecol. 92, 18–23 (2015).

    Google Scholar 

  • 18.

    Burns, R. G. et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 58, 216–234 (2013).

    CAS  Google Scholar 

  • 19.

    Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404 (2010).

    CAS  Google Scholar 

  • 20.

    Sinsabaugh, R. L., Carreiro, M. M. & Alvarez, S. Enzyme and microbial dynamics of litter decomposition. In Enzymes in the Environment, Activity, Ecology, and Applications, 249–265 (Marcel Dekker, New York, 2002).

  • 21.

    Raju, M. N., Golla, N. & Vengatampalli, R. Soil cellulase. In Soil Enzymes, 25–30 (Springer, Berlin, 2017).

  • 22.

    Deng, S. & Tabatabai, M. Cellulase activity of soils. Soil Biol. Biochem. 26, 1347–1354 (2002).

    Google Scholar 

  • 23.

    Raiesi, F. & Beheshti, A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Appl. Soil Ecol. 75, 63–70 (2014).

    Google Scholar 

  • 24.

    Reeves, D. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till. Res. 43, 131–167 (1997).

    ADS  Google Scholar 

  • 25.

    Chen, X. et al. Carbon and nitrogen forms in soil organic matter influenced by incorporated wheat and corn residues. Soil Sci. Plant Nutr. 63, 377–387 (2017).

    CAS  Google Scholar 

  • 26.

    Zhao, S. et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 216, 82–88 (2016).

    CAS  Google Scholar 

  • 27.

    Zhu, L. et al. Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice–wheat cropping system. CATENA 135, 283–289 (2015).

    CAS  Google Scholar 

  • 28.

    Malhi, S. S. & Gill, K. S. Fertilizer N and P effects on root mass of bromegrass, alfalfa and barley. J. Sustain. Agric. 19, 51–63 (2002).

    Google Scholar 

  • 29.

    Campbell, C., Selles, F., Lafond, G. & Zentner, R. Adopting zero tillage management: Impact on soil C and N under long-term crop rotations in a thin Black Chernozem. Can. J. Soil Sci. 81, 139–148 (2001).

    CAS  Google Scholar 

  • 30.

    Rasmussen, P. E. & Collins, H. P. Long-term impacts of tillage, fertilizer, and crop residue on soil organic matter in temperate semiarid regions. In Advances in Agronomy, Vol. 45, 93–134 (Elsevier, Amsterdam, 1991).

  • 31.

    Xu, M. et al. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biol. Fertil. Soils 47, 745 (2011).

    CAS  Google Scholar 

  • 32.

    Janzen, H., Campbell, C., Brandt, S. A., Lafond, G. & Townley-Smith, L. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci. Soc. Am. J. 56, 1799–1806 (1992).

    ADS  Google Scholar 

  • 33.

    Wang, W., Lai, D., Wang, C., Pan, T. & Zeng, C. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil Till. Res. 152, 8–16 (2015).

    Google Scholar 

  • 34.

    Chen, H. L., Zhou, J. M. & Xiao, B. H. Characterization of dissolved organic matter derived from rice straw at different stages of decay. J. Soils Sediments 10, 915–922 (2010).

    CAS  Google Scholar 

  • 35.

    Tirol-Padre, A., Tsuchiya, K., Inubushi, K. & Ladha, J. K. Enhancing soil quality through residue management in a rice-wheat system in Fukuoka, Japan. Soil Sci. Plant Nutr. 51, 849–860 (2005).

    CAS  Google Scholar 

  • 36.

    De Troyer, I., Amery, F., Van Moorleghem, C., Smolders, E. & Merckx, R. Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: A batch incubation study. Soil Biol. Biochem. 43, 513–519 (2011).

    Google Scholar 

  • 37.

    Treseder, K. K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Du, Y. et al. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Glob. Chang. Boil. 20, 3222–3228 (2014).

    ADS  Google Scholar 

  • 39.

    Mergel, A., Timchenko, A. & Kudeyarov, V. Role of plant root exudates in soil carbon and nitrogen transformation. In Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems. Developments in Plant and Soil Sciences, Vol. 82 (eds Box J.E.) (Springer, Dordrecht, 1998).

  • 40.

    Matocha, C. J., Haszler, G. R. & Grove, J. H. Nitrogen fertilization suppresses soil phenol oxidase enzyme activity in no-tillage systems. Soil Sci. 169, 708–714 (2004).

    ADS  CAS  Google Scholar 

  • 41.

    Dell, E. A., Carley, D. S., Rufty, T. & Shi, W. Heat stress and N fertilization affect soil microbial and enzyme activities in the creeping bentgrass (Agrostis stolonifera L.) rhizosphere. Appl. Soil Ecol. 56, 19–26 (2012).

    Google Scholar 

  • 42.

    Freeman, C., Ostle, N., Fenner, N. & Kang, H. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol. Biochem. 36, 1663–1667 (2004).

    CAS  Google Scholar 

  • 43.

    IUSS Working Group, W. World reference base for soil resources. World Soil Resources Report 103 (2006).

  • 44.

    Jones, D. & Willett, V. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 38, 991–999 (2006).

    CAS  Google Scholar 

  • 45.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).

    CAS  Google Scholar 

  • 46.

    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).

    CAS  Google Scholar 

  • 47.

    Gregorich, E. & Ellert, B. Light fraction and macroorganic matter in mineral soils. In Soil Sampling and Methods of Analysis, 397–407 (1993).

  • 48.

    Sinegani, A. A. S. & Sinegani, M. S. The effects of carbonates removal on adsorption, immobilization and activity of cellulase in a calcareous soil. Geoderma 173, 145–151 (2012).

    ADS  Google Scholar 

  • 49.

    Dick, W. A., Thavamani, B., Conley, S., Blaisdell, R. & Sengupta, A. Prediction of β-glucosidase and β-glucosaminidase activities, soil organic C, and amino sugar N in a diverse population of soils using near infrared reflectance spectroscopy. Soil Biol. Biochem. 56, 99–104 (2013).

    CAS  Google Scholar 

  • 50.

    Yang, Q. et al. Identification of three important amino acid residues of xylanase AfxynA from Aspergillus fumigatus for enzyme activity and formation of xylobiose as the major product. Process Biochem. 50, 571–581 (2015).

    CAS  Google Scholar 

  • 51.

    Vepsäläinen, M., Kukkonen, S., Vestberg, M., Sirviö, H. & Niemi, R. M. Application of soil enzyme activity test kit in a field experiment. Soil Biol. Biochem. 33, 1665–1672 (2001).

    Google Scholar 

  • 52.

    Yadav, M., Singh, S. & Yadava, S. Purification, characterisation and coal depolymerisation activity of lignin peroxidase from Lenzitus betulina MTCC-1183. Appl Biochem. Micro. 48, 583–589 (2012).

    CAS  Google Scholar 

  • 53.

    Anderson, A. J., Kwon, S.-I., Carnicero, A. & Falcón, M. A. Two isolates of Fusarium proliferatum from different habitats and global locations have similar abilities to degrade lignin. FEMS Microbiol. Lett. 249, 149–155 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Camarero, S., Sarkar, S., Ruiz-Dueñas, F.J., Martı́nez, M.A.J. & Martı́nez, A.T. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274, 10324–10330 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Feng, S. et al. Laccase activity is proportional to the abundance of bacterial laccase-like genes in soil from subtropical arable land. World J. Microb. Biotechnol. 31, 2039–2045 (2015).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture