in

Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead

  • 1.

    Rezapour, S., Atashpaz, B., Moghaddam, S. S. & Damalas, C. A. Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils. Sci. Total Environ. 656, 261–269. https://doi.org/10.1016/j.scitotenv.2018.11.288 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Wang, S., Wu, W., Liu, F., Liao, R. & Hu, Y. Accumulation of heavy metals in soil–crop systems: a review for wheat and corn. Environ. Sci. Pollut. Res. 24, 15209–15225. https://doi.org/10.1007/s11356-017-8909-5 (2017).

    CAS  Article  Google Scholar 

  • 3.

    Rezapour, S., Kouhinezhad, P., Samadi, A. & Rezapour, M. Level, pattern, and risk assessment of the selected soil trace metals in the calcareous cultivated Vertisols. Chem. Ecol. 8, 692–706. https://doi.org/10.1080/02757540.2013.810728 (2015).

    CAS  Article  Google Scholar 

  • 4.

    Zhang, Y. et al. Heavy metal accumulation and health risk assessment in soil-wheat system under different nitrogen levels. Sci. Total Environ. 622–623, 1499–1508. https://doi.org/10.1016/j.scitotenv.2017.09.317 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 5.

    Gill, R. A. et al. Reduced glutathione mediates pheno-ultrastructure kinome and transportome in chromium-induced Brassica napus L.. Front. Plant Sci. 8, 2037. https://doi.org/10.3389/fpls.2017.02037 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Khan, M. U., Malik, R. N. & Muhammad, S. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 93, 2230–2238. https://doi.org/10.1016/j.chemosphere.2013.07.067 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 7.

    Zajac, L. et al. Probabilistic estimates of prenatal lead exposure at toxic hotspots in low- and middle-income countries. Environ. Res. 183, 109251. https://doi.org/10.1016/j.envres.2020.109251 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Odongo, A. O., Moturi, W. N. & Mbuthia, E. K. Heavy metals and parasitic geo helminths toxicity among geophagous pregnant women: a case study of Nakuru Municipality, Kenya. Environ. Geochem. Health 38, 123–131. https://doi.org/10.1007/s10653-015-9690-3 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Vergara, C., María, C., Judith, L. P. & Rodriguez, H. Effects of co-cropping on soybean growth and stress response in lead-polluted soils. Chemosphere 246, 125833. https://doi.org/10.1016/j.chemosphere.2020.125833 (2020).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Shekar, C. C., Sammaiah, D., Shasthree, T. & Reddy, K. J. Effect of mercury on tomato growth and yield attributes. Int. J. Pharm. Biol. Sci. 2, B358–B364. https://doi.org/10.1007/s11356-018-1498-0 (2011).

    CAS  Article  Google Scholar 

  • 11.

    Tiwari, K., Singh, N. K. & Rai, U. N. Chromium phytotoxicity in radish (Raphanus sativus): effects on metabolism and nutrient uptake. Bull. Environ. Contam. Toxicol. 91, 339–344. https://doi.org/10.1007/s00128-013-1047-y (2013).

    CAS  Article  PubMed  Google Scholar 

  • 12.

    Bergqvist, C., Herbert, R., Persson, I. & Greger, M. Plants influence on arsenic availability and speciation in the rhizosphere, roots and shoots of three different vegetables. Environ. Pollut. 184, 540–546. https://doi.org/10.1016/j.envpol.2013.10.003 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Rizwan, M. et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182, 90–105. https://doi.org/10.1016/j.chemosphere.2017.05.013 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 14.

    Rafaqat, A. G. et al. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L.. Chemosphere 120, 154–164. https://doi.org/10.1016/j.chemosphere.2014.06.029 (2015).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Ali, B. et al. Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L.. PLoS ONE 10(4), e0123328. https://doi.org/10.1371/journal.pone.0123328 (2015) (eCollection).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Basharat, A. et al. Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind. Crops Prod. 52, 617–626. https://doi.org/10.1016/j.indcrop.2013.11.033 (2014).

    CAS  Article  Google Scholar 

  • 17.

    Gill, R. A. et al. Genotypic variation of the responses to chromium toxicity in four oilseed rape cultivars. Biol. Plant. 58, 539–550. https://doi.org/10.1007/s10535-014-0430-9 (2014).

    CAS  Article  Google Scholar 

  • 18.

    Tandon, V., Gupta, B. M. & Tandon, R. Free radicals/reactive oxygen species. JK Pract. Nurs. Res. Pract. 12, 143–148. https://doi.org/10.1155/2011/260482 (2005).

    Article  Google Scholar 

  • 19.

    Yang, Y., Liu, H., Xiang, X. H. & Liu, F. Y. Outline of occupational chromium poisoning in China. Bull Environ. Contam. Toxicol. 90, 742–749. https://doi.org/10.1007/s00128-013-0998-3 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Vaiserman, A. M. Aging-modulating treatments: from reductionism to a system oriented perspective. Front. Genet. 5, 1–3. https://doi.org/10.3389/fgene.2014.00446 (2016).

    CAS  Article  Google Scholar 

  • 21.

    Bewley, J.D. & Black, M. Biochemistry of germination and growth. In: Physiology and Biochemistry of seeds in relation to germination. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66668-1_5 (1978).

  • 22.

    Zadoks, J. C., Chang, T. T. & Konzak, C. T. A decimal code for the growth stages of cereals. Weed Res. 14, 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x (1974).

    Article  Google Scholar 

  • 23.

    Vernay, P. et al. Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere 72, 763–771. https://doi.org/10.1016/j.chemosphere.2008.03.018 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 24.

    Arnon, D. T. Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. J. Plant Physiol. 24, 1–15. https://doi.org/10.1104/pp.24.1.1 (1949).

    CAS  Article  Google Scholar 

  • 25.

    Zofia, L., Kmiecik, W. & Korus, A. Content of vitamin C, carotinoids, chlorophylls and polyphenols in green parts of dill (Anethum graveolens L.) depending on plant height. J. Food Compos. Anal. 19, 134–140. https://doi.org/10.1016/j.jfca.2005.04.009 (2006).

    CAS  Article  Google Scholar 

  • 26.

    Ryan, J., Estfan, G. & Rashid, A. Soil and Plant Analysis Laboratory Manual. 2nd ed., pp. 87–89. ISBN 9788172337650 (2001).

  • 27.

    Panichev, N., Mandiwana, K., Kataeva, M. & Siebert, S. Determination of Cr (VI) in plants by electrothermal atomic absorption spectrometry after leaching with sodium carbonate. Spectrochim. Acta Part B 60, 699–703. https://doi.org/10.1016/j.sab.2005.02.018 (2005).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Chandra, R., Kumar, P. K. & Singh, J. Impact of an aerobically treated and untreated (raw) distillery effluent irrigation on soil micro flora, growth, total chlorophyll and protein contents of Phaseolus aureus L.. J. Environ. Biol. 25, 381–385 (2004).

    PubMed  Google Scholar 

  • 29.

    Velthof, G., Van-Beusichem, M. & Raijmakers, W. Relationship between availability indices and plant uptake of nitrogen and phosphorus from organic products. Plant Soil 200, 215. https://doi.org/10.1023/A:1004336903214 (1998).

    CAS  Article  Google Scholar 

  • 30.

    Steel, R. G. D. & Torrie, J. H. Principles and Procedures of Statistics 172–177 (McGraw Hill Book Crop., Inc., Singapore, 1984).

    Google Scholar 

  • 31.

    Chun, X. L. et al. Effects of arsenic on seed germination and physiological activities of wheat seedlings. J. Environ. Sci. 19, 725–732. https://doi.org/10.1016/S1001-0742(07)60121-1 (2007).

    Article  Google Scholar 

  • 32.

    Alghobar, M. A. & Suresha, A. Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka India. J. Saudi Soc. Agric. Sci. 16, 49–59. https://doi.org/10.1016/j.jssas.2015.02.002 (2017).

    Article  Google Scholar 

  • 33.

    Yourtchi, M. S. & Bayat, H. Y. Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV). Int. J. Agric. Crop Sci. 6, 1099–1103 (2013).

    CAS  Google Scholar 

  • 34.

    Barberon, M. & Geldner, N. Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiol. 166, 528–537. https://doi.org/10.1104/pp.114.246124 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Shahid, M. et al. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 232, 1–44. https://doi.org/10.1007/978-3-319-06746-9_1 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Yadav, K. K. et al. Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol. Eng. 120, 274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039 (2018).

    Article  Google Scholar 

  • 37.

    Gopal, R. & Rizvi, A. H. Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70, 1539–1544. https://doi.org/10.1016/j.chemosphere.2007.08.043 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 38.

    Antoniadis, V. et al. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation—a review. Earth Sci. Rev. 172, 621–645. https://doi.org/10.1016/j.earscirev.2017.06.005 (2017).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Hamid, N., Bukhari, N. & Jawaid, F. Physiological responses of phaseolus vulgaris to different lead concentrations. Pak. J. Bot. 42, 239–246 (2010).

    CAS  Google Scholar 

  • 40.

    Osma, M., Serin, Z. & Leblebici, A. Heavy metals accumulation in some vegetables and soils in Istanbul. Ekoloji. 21, 1–8. https://doi.org/10.5053/ekoloji.2011.821 (2012).

    CAS  Article  Google Scholar 

  • 41.

    Singh, S., Parihar, P., Singh, R., Singh, V. P. & Prasad, S. M. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 6, 1143–1148. https://doi.org/10.3389/fpls.2015.01143 (2015).

    Article  PubMed  Google Scholar 

  • 42.

    Zeng, L. S., Liao, M., Chen, C. L. & Huang, C. Y. Effects of lead contamination on soil microbial activity and physiological indices in soil-Pb-rice (Oryza sativa L.) system. Chemosphere 65, 567–574. https://doi.org/10.1016/j.chemosphere.2006.02.039 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 43.

    Qadir, S., Qureshi, M. I., Javed, S. & Abdin, M. Z. Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci. 167, 1171–1181. https://doi.org/10.1016/j.plantsci.2004.06.018 (2004).

    CAS  Article  Google Scholar 

  • 44.

    Xiong, T. T. et al. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ. Geochem. Health 36, 897–909. https://doi.org/10.1007/s10653-014-9607-6 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Zheljazkov, V. D. & Nielsen, N. E. Effect of heavy metals on peppermint and cornmint. Plant Soil 178, 59–66. https://doi.org/10.1007/BF00011163 (1996).

    CAS  Article  Google Scholar 

  • 46.

    Lavado, R. S., Porcelli, C. A. & Alvarez, R. Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in Argentine Pampas. Soil Tillage Res. 62, 55–60. https://doi.org/10.1016/S0167-1987(01)00216-1 (2001).

    Article  Google Scholar 

  • 47.

    Gupta, N. et al. Trace elements in soil-vegetables interface: translocation, bioaccumulation, toxicity and amelioration—a review. Sci. Total Environ. 651, 2927–2942. https://doi.org/10.1016/j.scitotenv.2018.10.047 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 48.

    Ho, W. M., Ang, L. H. & Lee, D. K. Assessment of Pb uptake, translocation in Kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. J. Evniron. Sci. 20, 1341–47. https://doi.org/10.1016/S1001-0742(08)62231-7 (2008).

    CAS  Article  Google Scholar 

  • 49.

    Vogel-Mikus, K., Drobne, D. & Regvar, M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ. Pollut. 133, 233–242. https://doi.org/10.1016/j.envpol.2004.06.021 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Liu, J. G., Li, K. Q., Xu, J. K. & Zhang, Z. J. Lead toxicity, uptake and translocation in different rice cultivars. Plant Sci. 165, 793–802. https://doi.org/10.1016/S0168-9452(03)00273-5 (2003).

    CAS  Article  Google Scholar 

  • 51.

    Zhang, M. K., Liu, Z. Y. & Wang, H. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant Anal. 41, 820–831. https://doi.org/10.1080/00103621003592341 (2010).

    CAS  Article  Google Scholar 

  • 52.

    Shahid, M. et al. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J. Hazard. Mater. 325, 36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Sharma, R. K., Agrawal, M., Bhushan, S. & Agrawal, S. B. Physiological and biochemical responses resulting from cadmium and zinc accumulation in carrot plants. J. Plant Nutr. 33, 1066–1079. https://doi.org/10.1080/01904161003729774 (2010).

    CAS  Article  Google Scholar 

  • 54.

    McBride, M. B., Shayler, H. A., Russell-Anelli, J. M., Spliethoff, H. M. & Marquez, L. G. Arsenic and lead uptake by vegetable crops grown on an old Orchard site amended with compost. Water Air Soil Pollut. 226, 265–272. https://doi.org/10.1007/s11270-015-2529-9 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture