in

Echolocation at high intensity imposes metabolic costs on flying bats

[adace-ad id="91168"]
  • 1.

    Podos, J. & Cohn-Haft, M. Extremely loud mating songs at close range in white bellbirds. Curr. Biol. 29, R1068–R1069 (2019).

    CAS  Article  Google Scholar 

  • 2.

    Van Belle, S., Estrada, A. & Garber, P. A. The function of loud calls in black howler monkeys (Alouatta pigra): food, mate, or infant defense? Am. J. Primatol. 76, 1196–1206 (2014).

    Article  Google Scholar 

  • 3.

    Shen, J.-X. & Xu, Z.-M. The Lombard effect in male ultrasonic frogs: regulating antiphonal signal frequency and amplitude in noise. Sci. Rep. 6, 27103 (2016).

    CAS  Article  Google Scholar 

  • 4.

    Surlykke, A. & Kalko, E. K. V. Echolocating bats cry out loud to detect their prey. PLoS ONE 3, e2036 (2008).

    Article  Google Scholar 

  • 5.

    Holderied, M. W. & von Helversen, O. Echolocation range and wingbeat period match in aerial-hawking bats. Proc. R. Soc. Lond. B 270, 2293–2299 (2003).

    CAS  Article  Google Scholar 

  • 6.

    Jakobsen, L., Brinkløv, S. & Surlykke, A. Intensity and directionality of bat echolocation signals. Front. Physiol. 4, 89 (2013).

    Article  Google Scholar 

  • 7.

    Voigt, C. C. & Lewanzik, D. ‘No cost of echolocation for flying bats’ revisited. J. Comp. Physiol. B 182, 831–840 (2012).

    Article  Google Scholar 

  • 8.

    Speakman, J. R. & Racey, P. A. No cost of echolocation for bats in flight. Nature 350, 421–423 (1991).

    CAS  Article  Google Scholar 

  • 9.

    Speakman, J. R., Anderson, M. E. & Racey, P. A. The energy cost of echolocation in pipistrelle bats (Pipistrellus pipistrellus). J. Comp. Physiol. A 165, 679–685 (1989).

    Article  Google Scholar 

  • 10.

    Winter, Y. & von Helversen, O. The energy cost of flight: do small bats fly more cheaply than birds? J. Comp. Physiol. B 168, 105–111 (1998).

    CAS  Article  Google Scholar 

  • 11.

    Suthers, R. A., Thomas, S. P. & Suthers, B. J. Respiration, wing-beat and ultrasonic pulse emission in an echolocating bat. J. Exp. Biol. 56, 37–48 (1972).

    Google Scholar 

  • 12.

    Lancaster, W. C., Henson, O. W. & Keating, A. W. Respiratory muscle activity in relation to vocalization in flying bats. J. Exp. Biol. 198, 175–191 (1995).

    CAS  PubMed  Google Scholar 

  • 13.

    Wong, J. & Waters, D. The synchronisation of signal emission with wingbeat during the approach phase in soprano pipistrelles (Pipistrellus pygmaeus). J. Exp. Biol. 204, 575–583 (2001).

    CAS  PubMed  Google Scholar 

  • 14.

    Luo, J., Goerlitz, H. R., Brumm, H. & Wiegrebe, L. Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise. Sci. Rep. 5, 18556 (2015).

    CAS  Article  Google Scholar 

  • 15.

    Hage, S. R., Jiang, T., Berquist, S. W., Feng, J. & Metzner, W. Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proc. Natl Acad. Sci. USA 110, 4063–4068 (2013).

    CAS  Article  Google Scholar 

  • 16.

    Amichai, E., Blumrosen, G. & Yovel, Y. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats. Proc. R. Soc. Lond. B 282, 2064 (2015).

    Article  Google Scholar 

  • 17.

    Voigt-Heucke, S. L., Zimmer, S. & Kipper, S. Does interspecific eavesdropping promote aerial aggregations in European Pipistrelle bats during autumn? Ethology 122, 745–757 (2016).

    Article  Google Scholar 

  • 18.

    Speakman, J. R. & Thomson, S. C. Validation of the labelled bicarbonate technique for measurement of short-term energy expenditure in the mouse. Z. Ernahrungswiss. 36, 273–277 (1997).

    CAS  Article  Google Scholar 

  • 19.

    Troxell, S.A., Holderied, M.W., Pētersons, G. & Voigt, C.C. Nathusius’ bats optimize long-distance migration by flying at maximum range speed. J. Exp. Biol. 222, 176396 (2019).

    Article  Google Scholar 

  • 20.

    Lancaster, W. C. & Speakman, J. R. Variations in respiratory muscle activity during echolocation when stationary in three species of bat (Microchiroptera: Vespertilionidae). J. Exp. Biol. 204, 4185–4197 (2001).

    CAS  PubMed  Google Scholar 

  • 21.

    Fattu, J. M. & Suthers, R. A. Subglottic pressure and the control of phonation by the echolocating bat. Eptesicus. J. Comp. Physiol. 143, 465–475 (1981).

    Article  Google Scholar 

  • 22.

    Šuba, J., Petersons, G. & Rydell, J. Fly-and-forage strategy in the bat Pipistrellus nathusii during autumn migration. Acta Chiropterol. 14, 377 (2012).

    Google Scholar 

  • 23.

    Kurta, A., Bell, G. P., Nagy, K. A. & Kunz, T. H. Energetics of pregnancy and lactation in freeranging little brown bats (Myotis lucifugus). Physiol. Zool. 62, 804–818 (1989).

    Article  Google Scholar 

  • 24.

    Koblitz, J. C., Stilz, P. & Schnitzler, H.-U. Source levels of echolocation signals vary in correlation with wingbeat cycle in landing big brown bats (Eptesicus fuscus). J. Exp. Biol. 213, 3263–3268 (2010).

    Article  Google Scholar 

  • 25.

    Kalko, E. K. V. & Schnitzler, H. U. Plasticity in echolocation signals of European pipistrelle bats in search flight: implications for habitat use and prey detection. Behav. Ecol. Sociobiol. 33, 415–428 (1993).

    Article  Google Scholar 

  • 26.

    Passmore, N. I. Sound levels of mating calls of some African frogs. Herpetologica 37, 166–171 (1981).

    Google Scholar 

  • 27.

    Sanvito, S. & Galimberti, F. Source level of male vocalisations in the genus Mirounga: repeatability and correlates. Bioacoustics 14, 47–59 (2003).

    Article  Google Scholar 

  • 28.

    Nemeth, E. Measuring the sound pressure level of the song of the screaming piha Lipaugus vociferans: one of the loudest birds in the world? Bioacoustics 14, 225–228 (2004).

    Article  Google Scholar 

  • 29.

    Wyman, M. T., Mooring, M. S., McCowan, B., Penedo, M. C. T. & Hart, L. A. Amplitude of bison bellows reflects male quality, physical condition and motivation. Anim. Behav. 76, 1625–1639 (2008).

    Article  Google Scholar 

  • 30.

    Fletcher, N. H. A simple frequency-scaling rule for animal communication. J. Acoust. Soc. Am. 115, 2334–2338 (2004).

    Article  Google Scholar 

  • 31.

    Fletcher, N. in Springer Handbook of Acoustics (ed. Rossing, T. D.) 785–804 (Springer, 2007).

  • 32.

    Engel, S., Biebach, H. & Visser, G. H. Metabolic costs of avian flight in relation to flight velocity: a study in rose coloured starlings (Sturnus roseus, Linnaeus). J. Comp. Physiol. B 176, 415 (2006).

    Article  Google Scholar 

  • 33.

    Hambly, C., Harper, E. & Speakman, J. Cost of flight in the zebra finch (Taenopygia guttata): a novel approach based on elimination of 13C labelled bicarbonate. J. Comp. Physiol. B 172, 529–539 (2002).

    CAS  Article  Google Scholar 

  • 34.

    Hambly, C. & Voigt, C. C. Measuring energy expenditure in birds using bolus injections of 13C-labelled Na-bicarbonate. Comp. Biochem Physiol. A158, 323–328 (2011).

    Article  Google Scholar 

  • 35.

    Butler, P. J., Green, J. A., Boyd, I. L. & Speakman, J. R. Measuring metabolic rate in the field: the pros and cons of the doubly labelled water and heart rate methods. Funct. Ecol. 18, 168–183 (2004).

    Article  Google Scholar 

  • 36.

    Pennycuick, C. J. in Avian Biology Vol. 5 (eds Farner D. S., King J. R. & Parkes K. C.) 1–75 (Academic Press, 1975).


  • Source: Ecology - nature.com

    Gainers and losers of surface and terrestrial water resources in China during 1989–2016

    Time to revise the Sustainable Development Goals