in

Temporal clustering of prey in wildlife passages provides no evidence of a prey-trap

  • 1.

    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Cons. 143, 1307–1316. https://doi.org/10.1016/j.biocon.2010.02.009 (2010).

    Article  Google Scholar 

  • 2.

    Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231. https://doi.org/10.1146/annurev.ecolsys.29.1.207 (1998).

    Article  Google Scholar 

  • 3.

    Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30. https://doi.org/10.1046/j.1523-1739.2000.99084.x (2000).

    Article  Google Scholar 

  • 4.

    Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecology and Society 14, 21. https://doi.org/10.5751/ES-02815-140121 (2009).

    Article  Google Scholar 

  • 5.

    Clevenger, A. P., Chruszcz, B. & Gunson, K. Drainage culverts as habitat linkages and factors affecting passage by mammals. J. Appl. Ecol. 38, 1340–1349. https://doi.org/10.1016/S0006-3207(02)00127-1 (2001).

    Article  Google Scholar 

  • 6.

    McDonald, W. R. & St. Clair, C. C. The effects of artificial and natural barriers on the movement of small mammals in Banff National Park, Canada. Oikos 105, 397–407. https://doi.org/10.1111/j.0030-1299.2004.12640.x (2004).

    Article  Google Scholar 

  • 7.

    Shepard, D. B., Kuhns, A. R., Dreslik, M. J. & Phillips, C. A. Roads as barriers to animal movement in fragmented landscapes. Anim. Conserv. 11, 288–296. https://doi.org/10.1111/j.1469-1795.2008.00183.x (2008).

    Article  Google Scholar 

  • 8.

    McGregor, R. L., Bender, D. J. & Fahrig, L. Do small mammals avoid roads because of the traffic?. J. Appl. Ecol. 45, 117–123. https://doi.org/10.1111/j.1365-2664.2007.01403.x (2007).

    Article  Google Scholar 

  • 9.

    Hennessy, C., Tsai, C.-C., Anderson, S. J., Zollner, P. A. & Rhodes, O. E. Jr. What’s stopping you? Variability of interstate highways as barriers for four species of terrestrial rodents. Ecosphere 9, e02333. https://doi.org/10.1002/ecs2.2333 (2018).

    Article  Google Scholar 

  • 10.

    Glista, D. J., DeVault, T. L. & DeWoody, J. A. A review of mitigation measures for reducing wildlife mortality on roadways. Landsc. Urban Plan. 91, 1–7. https://doi.org/10.1016/j.landurbplan.2008.11.001 (2009).

    Article  Google Scholar 

  • 11.

    Yanes, M., Velasco, J. M. & Suarez, F. Permeability of roads and railways to vertebrates: the importance of culverts. Biol. Cons. 71, 217–222. https://doi.org/10.1016/0006-3207(94)00028-O (1995).

    Article  Google Scholar 

  • 12.

    Hunt, A., Dickens, H. & Whelan, R. Movement of mammals through tunnels under railway lines. Aust. Zool. 24, 89–93. https://doi.org/10.7882/AZ.1987.008 (1987).

    Article  Google Scholar 

  • 13.

    McDonald, W. R. & St. Clair, C. C. Elements that promote highway crossing structure use by small mammals in Banff National Park. J. Appl. Ecol. 41, 82–93. https://doi.org/10.1111/j.1365-2664.2004.00877.x (2004).

    Article  Google Scholar 

  • 14.

    Soanes, K. et al. Movement re-established but not restored: Inferring the effectiveness of road-crossing mitigation for a gliding mammal by monitoring use. Biol. Cons. 159, 434–441. https://doi.org/10.1016/j.biocon.2012.10.016 (2013).

    Article  Google Scholar 

  • 15.

    Clevenger, A. P. & Waltho, N. Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Cons. 121, 453–464. https://doi.org/10.1016/j.biocon.2004.04.025 (2005).

    Article  Google Scholar 

  • 16.

    Ascensão, F. & Mira, A. Factors affecting culvert use by vertebrates along two stretches of road in southern Portugal. Ecol. Res. 22, 57–66. https://doi.org/10.1007/s11284-006-0004-1 (2007).

    Article  Google Scholar 

  • 17.

    Little, S. J., Harcourt, R. G. & Clevenger, A. P. Do wildlife passages act as prey-traps?. Biol. Cons. 107, 135–145. https://doi.org/10.1016/S0006-3207(02)00059-9 (2002).

    Article  Google Scholar 

  • 18.

    Mata, C., Bencini, R., Chambers, B. K. & Malo, J. E. Predator-Prey Interactions at Wildlife Crossing Structures: Between Myth and Reality 190–197 (Wiley, Hoboken, 2015).

    Google Scholar 

  • 19.

    Ford, A. T. & Clevenger, A. P. Validity of the prey-trap hypothesis for carnivore-ungulate interactions at wildlife-crossing structures. Conserv. Biol. 24, 1679–1685. https://doi.org/10.1111/j.1523-1739.2010.01564.x (2010).

    Article  PubMed  Google Scholar 

  • 20.

    Fischer, S., Oberhummer, E., Cunha-Saraiva, F., Gerber, N. & Taborsky, B. Smell or vision? The use of different sensory modalities in predator discrimination. Behav. Ecol. Sociobiol. 71, 143. https://doi.org/10.1007/s00265-017-2371-8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Dickman, C. R. & Doncaster, C. P. Responses of small mammals to red fox (Vulpes vulpes) odour. J. Zool. 204, 521–531. https://doi.org/10.1111/j.1469-7998.1984.tb02384.x (1984).

    Article  Google Scholar 

  • 22.

    Kats, L. B. & Dill, L. M. The scent of death: Chemosensory assessment of predation risk by prey animals. Écoscience 5, 361–394. https://doi.org/10.1080/11956860.1998.11682468 (1998).

    Article  Google Scholar 

  • 23.

    Caldwell, M. R. & Klip, J. M. K. Wildlife Interactions within Highway Underpasses. J. Wildl. Manag. 84, 227–236. https://doi.org/10.1002/jwmg.21801 (2020).

    Article  Google Scholar 

  • 24.

    Dupuis-Desormeaux, M. et al. Testing the Prey-Trap Hypothesis at Two Wildlife Conservancies in Kenya. PLoS ONE 10, e0139537. https://doi.org/10.1371/journal.pone.0139537 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Soanes, K., Mitchell, B. & van der Ree, R. Quantifying predation attempts on arboreal marsupials using wildlife crossing structures above a major road. Aust. Mammal. https://doi.org/10.1071/am16044 (2017).

    Article  Google Scholar 

  • 26.

    Cote, J., Fogarty, S., Tymen, B., Sih, A. & Brodin, T. Personality-dependent dispersal cancelled under predation risk. Proc. R. Soc. B Biol. Sci. 280, 20132349. https://doi.org/10.1098/rspb.2013.2349 (2013).

    Article  Google Scholar 

  • 27.

    Wooster, D. & Sih, A. A review of the drift and activity responses of stream prey to predator presence. Oikos 73, 3–8. https://doi.org/10.2307/3545718 (1995).

    Article  Google Scholar 

  • 28.

    Clevenger, A. P. & Waltho, N. Factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Conserv. Biol. 14, 47–56. https://doi.org/10.1046/j.1523-1739.2000.00099-085.x (2000).

    Article  Google Scholar 

  • 29.

    Martinig, A. R. & Bélanger-Smith, K. Factors influencing the discovery and use of wildlife passages for small fauna. J. Appl. Ecol. 53, 825–836. https://doi.org/10.1111/1365-2664.12616 (2016).

    Article  Google Scholar 

  • 30.

    Bédard, Y., Alain, E., Leblanc, Y., Poulin, M. A. & Morin, M. Conception et suivi des passages à petite faune sous la route 175 dans la réserve faunique des Laurentides. Can. Nat. 136, 66–71. https://doi.org/10.7202/1009109ar (2012).

    Article  Google Scholar 

  • 31.

    Reed, D. F. & Ward, A. L. in Routes et Faune Sauvage 285–293 (Service d’Etudes Techniques de Routes et Autoroutes, 1985).

  • 32.

    Naughton, D. The Natural History of Canadian Mammals (University of Toronto Press, Toronto, 2012).

    Google Scholar 

  • 33.

    Smith, C. C. The adaptive nature of social organization in the genus of three squirrels Tamiasciurus. Ecol. Monogr. 38, 31–64. https://doi.org/10.2307/1948536 (1968).

    Article  Google Scholar 

  • 34.

    Hannon, S. J. & Cotterill, S. E. Nest predation in aspen woodlots in an agricultural area in Alberta: the enemy from within. Auk 115, 16–25. https://doi.org/10.2307/4089107 (1998).

    Article  Google Scholar 

  • 35.

    Martin, T. E. On the advantage of being different: nest predation and the coexistence of bird species. Proc. Natl. Acad. Sci. U.S.A. 85, 2196–2199. https://doi.org/10.1073/pnas.85.7.2196 (1988).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Pelech, S. A., Smith, J. N. M. & Boutin, S. A predator’s perspective of nest predation: predation by red squirrels is learned, not incidental. Oikos 119, 841–851. https://doi.org/10.1111/j.1600-0706.2009.17786.x (2010).

    Article  Google Scholar 

  • 37.

    Tewksbury, J. J., Hejl, S. J. & Martin, T. E. Breeding productivity does not decline with increasing fragmentation in a western landscape. Ecology 79, 2890–2903. https://doi.org/10.1890/0012-9658(1998)079[2890:BPDNDW]2.0.CO;2 (1998).

    Article  Google Scholar 

  • 38.

    Ball, J. R., Bayne, E. M. & Machtans, C. Tundra to tropics: connecting birds, habitats and people.In Proceedings of the 4th International Partners in Flight Conference (eds T D Rich, C Arizmendi, D Demarest, & C Thompson) 37–44 (2009).

  • 39.

    Ford, A. T., Clevenger, A. P. & Bennett, A. Comparison of methods of monitoring wildlife crossing-structures on highways. J. Wildl. Manag. 73, 1213–1222. https://doi.org/10.2193/2008-387 (2009).

    Article  Google Scholar 

  • 40.

    O’Connell, A. F. Jr. et al. Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. J. Wildl. Manag. 70, 1625–1633. https://doi.org/10.2193/0022-541X(2006)70[1625:ESOADP]2.0.CO;2 (2006).

    Article  Google Scholar 

  • 41.

    Popescu, V. D., Valpine, P. & Sweitzer, R. A. Testing the consistency of wildlife data types before combining them: the case of camera traps and telemetry. Ecol. Evol. 4, 933–943. https://doi.org/10.1002/ece3.997 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (2019).

  • 43.

    Hurst, J. L., Robertson, D. H. L., Tolladay, U. & Beynon, R. J. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55, 1289–1297. https://doi.org/10.1006/anbe.1997.0650 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Koivula, M. & Korpimäk, I. E. Do scent marks increase predation risk of microtine rodents?. Oikos 95, 275–281. https://doi.org/10.1034/j.1600-0706.2001.950209.x (2001).

    Article  Google Scholar 

  • 45.

    Cheveau, M., Drapeau, P., Imbeau, L. & Bergeron, Y. Owl winter irruptions as an indicator of small mammal population cycles in the boreal forest of eastern North America. Oikos 107, 190–198. https://doi.org/10.1111/j.0030-1299.2004.13285.x (2001).

    Article  Google Scholar 

  • 46.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. https://doi.org/10.3929/ethz-b-000240890 (2017).

    Article  Google Scholar 

  • 47.

    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x (2010).

    Article  Google Scholar 

  • 48.

    Lenth, R. V. Least-squares means: the RPackagelsmeans. J. Stat. Softw. https://doi.org/10.18637/jss.v069.i01 (2016).

    Article  Google Scholar 

  • 49.

    Boutin, S. et al. Anticipatory reproduction and population growth in seed predators. Science 314, 1928–1930. https://doi.org/10.1126/science.1135520 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 50.

    Severud, W. J., Belant, J. L., Bruggink, J. G. & Windels, S. K. Predator cues reduce American beaver use of foraging trails. Human Wildl. Interact. 5, 296–305 (2011).

    Google Scholar 

  • 51.

    Shaffery, H. M. & Relyea, R. A. Dissecting the smell of fear from conspecific and heterospecific prey: investigating the processes that induce anti-predator defenses. Oecologia 180, 55–65. https://doi.org/10.1007/s00442-015-3444-x (2016).

    ADS  Article  PubMed  Google Scholar 

  • 52.

    Ebensperger, L. A. A review of the evolutionary causes of rodent group-living. Acta Theriologica 46, 115–144. https://doi.org/10.1007/BF03192423 (2001).

    Article  Google Scholar 

  • 53.

    Hamilton, W. D. Geometry for the selfish herd. J. Theor. Biol. 31, 295–311. https://doi.org/10.1016/0022-5193(71)90189-5 (1971).

    CAS  Article  Google Scholar 

  • 54.

    Stensland, E. V. A., Angerbjörn, A. & Berggren, P. E. R. Mixed species groups in mammals. Mammal Rev. 33, 205–223. https://doi.org/10.1046/j.1365-2907.2003.00022.x (2003).

    Article  Google Scholar 

  • 55.

    Harris, I. M., Mills, H. R. & Bencini, R. Owl winter irruptions as an indicator of small mammal population cycles in the boreal forest of eastern North America. Wildl. Res. 37, 127–133. https://doi.org/10.1071/wr09040 (2010).

    Article  Google Scholar 

  • 56.

    Orrock, J. L. & Fletcher, R. J. Jr. An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey. Proc. Biol. Sci. 281, 20140391. https://doi.org/10.1098/rspb.2014.0391 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Schmidt, K. & Kuijper, D. P. J. A “death trap” in the landscape of fear. Mammal Res. 60, 275–284. https://doi.org/10.1007/s13364-015-0229-x (2015).

    Article  Google Scholar 

  • 58.

    Sonerud, G. A. Nest Hole Shift in Tengmalm’s Owl Aegolius funereus as Defence Against Nest Predation Involving Long-Term Memory in the Predator. J. Anim. Ecol. 54, 179–192. https://doi.org/10.2307/4629 (1985).

    Article  Google Scholar 

  • 59.

    Tinbergen, N., Impekoven, M. & Franck, D. An Experiment on Spacing-Out as a Defence against Predation. Behaviour 28, 307–321. https://doi.org/10.1163/156853967X00064 (1967).

    Article  Google Scholar 

  • 60.

    Angelstam, P. Predation on ground-nesting birds’ nests in relation to predator densities and habitat edge. Oikos 47, 365–373. https://doi.org/10.2307/3565450 (1986).

    Article  Google Scholar 

  • 61.

    Schmidt, K. A. & Whelan, C. J. Nest predation on woodland songbirds: when is nest predation density dependent?. Oikos 87, 65–74. https://doi.org/10.2307/3546997 (1999).

    Article  Google Scholar 

  • 62.

    Vickery, P. D., Hunter, M. L. Jr. & Wells, J. V. Evidence of incidental nest predation and its effects on nests of threatened grassland birds. Oikos 63, 281–288. https://doi.org/10.2307/3545389 (1992).

    Article  Google Scholar 

  • 63.

    Martinig, A. R. & McLaren, A. A. D. Vegetated highway medians as foraging habitat for small mammals. Wildl. Soc. Bull. 43, 317–322. https://doi.org/10.1002/wsb.967 (2019).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Gainers and losers of surface and terrestrial water resources in China during 1989–2016

    Time to revise the Sustainable Development Goals