Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Cons. 143, 1307–1316. https://doi.org/10.1016/j.biocon.2010.02.009 (2010).
Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231. https://doi.org/10.1146/annurev.ecolsys.29.1.207 (1998).
Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30. https://doi.org/10.1046/j.1523-1739.2000.99084.x (2000).
Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecology and Society 14, 21. https://doi.org/10.5751/ES-02815-140121 (2009).
Clevenger, A. P., Chruszcz, B. & Gunson, K. Drainage culverts as habitat linkages and factors affecting passage by mammals. J. Appl. Ecol. 38, 1340–1349. https://doi.org/10.1016/S0006-3207(02)00127-1 (2001).
McDonald, W. R. & St. Clair, C. C. The effects of artificial and natural barriers on the movement of small mammals in Banff National Park, Canada. Oikos 105, 397–407. https://doi.org/10.1111/j.0030-1299.2004.12640.x (2004).
Shepard, D. B., Kuhns, A. R., Dreslik, M. J. & Phillips, C. A. Roads as barriers to animal movement in fragmented landscapes. Anim. Conserv. 11, 288–296. https://doi.org/10.1111/j.1469-1795.2008.00183.x (2008).
McGregor, R. L., Bender, D. J. & Fahrig, L. Do small mammals avoid roads because of the traffic?. J. Appl. Ecol. 45, 117–123. https://doi.org/10.1111/j.1365-2664.2007.01403.x (2007).
Hennessy, C., Tsai, C.-C., Anderson, S. J., Zollner, P. A. & Rhodes, O. E. Jr. What’s stopping you? Variability of interstate highways as barriers for four species of terrestrial rodents. Ecosphere 9, e02333. https://doi.org/10.1002/ecs2.2333 (2018).
Glista, D. J., DeVault, T. L. & DeWoody, J. A. A review of mitigation measures for reducing wildlife mortality on roadways. Landsc. Urban Plan. 91, 1–7. https://doi.org/10.1016/j.landurbplan.2008.11.001 (2009).
Yanes, M., Velasco, J. M. & Suarez, F. Permeability of roads and railways to vertebrates: the importance of culverts. Biol. Cons. 71, 217–222. https://doi.org/10.1016/0006-3207(94)00028-O (1995).
Hunt, A., Dickens, H. & Whelan, R. Movement of mammals through tunnels under railway lines. Aust. Zool. 24, 89–93. https://doi.org/10.7882/AZ.1987.008 (1987).
McDonald, W. R. & St. Clair, C. C. Elements that promote highway crossing structure use by small mammals in Banff National Park. J. Appl. Ecol. 41, 82–93. https://doi.org/10.1111/j.1365-2664.2004.00877.x (2004).
Soanes, K. et al. Movement re-established but not restored: Inferring the effectiveness of road-crossing mitigation for a gliding mammal by monitoring use. Biol. Cons. 159, 434–441. https://doi.org/10.1016/j.biocon.2012.10.016 (2013).
Clevenger, A. P. & Waltho, N. Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Cons. 121, 453–464. https://doi.org/10.1016/j.biocon.2004.04.025 (2005).
Ascensão, F. & Mira, A. Factors affecting culvert use by vertebrates along two stretches of road in southern Portugal. Ecol. Res. 22, 57–66. https://doi.org/10.1007/s11284-006-0004-1 (2007).
Little, S. J., Harcourt, R. G. & Clevenger, A. P. Do wildlife passages act as prey-traps?. Biol. Cons. 107, 135–145. https://doi.org/10.1016/S0006-3207(02)00059-9 (2002).
Mata, C., Bencini, R., Chambers, B. K. & Malo, J. E. Predator-Prey Interactions at Wildlife Crossing Structures: Between Myth and Reality 190–197 (Wiley, Hoboken, 2015).
Ford, A. T. & Clevenger, A. P. Validity of the prey-trap hypothesis for carnivore-ungulate interactions at wildlife-crossing structures. Conserv. Biol. 24, 1679–1685. https://doi.org/10.1111/j.1523-1739.2010.01564.x (2010).
Fischer, S., Oberhummer, E., Cunha-Saraiva, F., Gerber, N. & Taborsky, B. Smell or vision? The use of different sensory modalities in predator discrimination. Behav. Ecol. Sociobiol. 71, 143. https://doi.org/10.1007/s00265-017-2371-8 (2017).
Dickman, C. R. & Doncaster, C. P. Responses of small mammals to red fox (Vulpes vulpes) odour. J. Zool. 204, 521–531. https://doi.org/10.1111/j.1469-7998.1984.tb02384.x (1984).
Kats, L. B. & Dill, L. M. The scent of death: Chemosensory assessment of predation risk by prey animals. Écoscience 5, 361–394. https://doi.org/10.1080/11956860.1998.11682468 (1998).
Caldwell, M. R. & Klip, J. M. K. Wildlife Interactions within Highway Underpasses. J. Wildl. Manag. 84, 227–236. https://doi.org/10.1002/jwmg.21801 (2020).
Dupuis-Desormeaux, M. et al. Testing the Prey-Trap Hypothesis at Two Wildlife Conservancies in Kenya. PLoS ONE 10, e0139537. https://doi.org/10.1371/journal.pone.0139537 (2015).
Soanes, K., Mitchell, B. & van der Ree, R. Quantifying predation attempts on arboreal marsupials using wildlife crossing structures above a major road. Aust. Mammal. https://doi.org/10.1071/am16044 (2017).
Cote, J., Fogarty, S., Tymen, B., Sih, A. & Brodin, T. Personality-dependent dispersal cancelled under predation risk. Proc. R. Soc. B Biol. Sci. 280, 20132349. https://doi.org/10.1098/rspb.2013.2349 (2013).
Wooster, D. & Sih, A. A review of the drift and activity responses of stream prey to predator presence. Oikos 73, 3–8. https://doi.org/10.2307/3545718 (1995).
Clevenger, A. P. & Waltho, N. Factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Conserv. Biol. 14, 47–56. https://doi.org/10.1046/j.1523-1739.2000.00099-085.x (2000).
Martinig, A. R. & Bélanger-Smith, K. Factors influencing the discovery and use of wildlife passages for small fauna. J. Appl. Ecol. 53, 825–836. https://doi.org/10.1111/1365-2664.12616 (2016).
Bédard, Y., Alain, E., Leblanc, Y., Poulin, M. A. & Morin, M. Conception et suivi des passages à petite faune sous la route 175 dans la réserve faunique des Laurentides. Can. Nat. 136, 66–71. https://doi.org/10.7202/1009109ar (2012).
Reed, D. F. & Ward, A. L. in Routes et Faune Sauvage 285–293 (Service d’Etudes Techniques de Routes et Autoroutes, 1985).
Naughton, D. The Natural History of Canadian Mammals (University of Toronto Press, Toronto, 2012).
Smith, C. C. The adaptive nature of social organization in the genus of three squirrels Tamiasciurus. Ecol. Monogr. 38, 31–64. https://doi.org/10.2307/1948536 (1968).
Hannon, S. J. & Cotterill, S. E. Nest predation in aspen woodlots in an agricultural area in Alberta: the enemy from within. Auk 115, 16–25. https://doi.org/10.2307/4089107 (1998).
Martin, T. E. On the advantage of being different: nest predation and the coexistence of bird species. Proc. Natl. Acad. Sci. U.S.A. 85, 2196–2199. https://doi.org/10.1073/pnas.85.7.2196 (1988).
Pelech, S. A., Smith, J. N. M. & Boutin, S. A predator’s perspective of nest predation: predation by red squirrels is learned, not incidental. Oikos 119, 841–851. https://doi.org/10.1111/j.1600-0706.2009.17786.x (2010).
Tewksbury, J. J., Hejl, S. J. & Martin, T. E. Breeding productivity does not decline with increasing fragmentation in a western landscape. Ecology 79, 2890–2903. https://doi.org/10.1890/0012-9658(1998)079[2890:BPDNDW]2.0.CO;2 (1998).
Ball, J. R., Bayne, E. M. & Machtans, C. Tundra to tropics: connecting birds, habitats and people.In Proceedings of the 4th International Partners in Flight Conference (eds T D Rich, C Arizmendi, D Demarest, & C Thompson) 37–44 (2009).
Ford, A. T., Clevenger, A. P. & Bennett, A. Comparison of methods of monitoring wildlife crossing-structures on highways. J. Wildl. Manag. 73, 1213–1222. https://doi.org/10.2193/2008-387 (2009).
O’Connell, A. F. Jr. et al. Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. J. Wildl. Manag. 70, 1625–1633. https://doi.org/10.2193/0022-541X(2006)70[1625:ESOADP]2.0.CO;2 (2006).
Popescu, V. D., Valpine, P. & Sweitzer, R. A. Testing the consistency of wildlife data types before combining them: the case of camera traps and telemetry. Ecol. Evol. 4, 933–943. https://doi.org/10.1002/ece3.997 (2014).
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (2019).
Hurst, J. L., Robertson, D. H. L., Tolladay, U. & Beynon, R. J. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55, 1289–1297. https://doi.org/10.1006/anbe.1997.0650 (1998).
Koivula, M. & Korpimäk, I. E. Do scent marks increase predation risk of microtine rodents?. Oikos 95, 275–281. https://doi.org/10.1034/j.1600-0706.2001.950209.x (2001).
Cheveau, M., Drapeau, P., Imbeau, L. & Bergeron, Y. Owl winter irruptions as an indicator of small mammal population cycles in the boreal forest of eastern North America. Oikos 107, 190–198. https://doi.org/10.1111/j.0030-1299.2004.13285.x (2001).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. https://doi.org/10.3929/ethz-b-000240890 (2017).
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x (2010).
Lenth, R. V. Least-squares means: the RPackagelsmeans. J. Stat. Softw. https://doi.org/10.18637/jss.v069.i01 (2016).
Boutin, S. et al. Anticipatory reproduction and population growth in seed predators. Science 314, 1928–1930. https://doi.org/10.1126/science.1135520 (2006).
Severud, W. J., Belant, J. L., Bruggink, J. G. & Windels, S. K. Predator cues reduce American beaver use of foraging trails. Human Wildl. Interact. 5, 296–305 (2011).
Shaffery, H. M. & Relyea, R. A. Dissecting the smell of fear from conspecific and heterospecific prey: investigating the processes that induce anti-predator defenses. Oecologia 180, 55–65. https://doi.org/10.1007/s00442-015-3444-x (2016).
Ebensperger, L. A. A review of the evolutionary causes of rodent group-living. Acta Theriologica 46, 115–144. https://doi.org/10.1007/BF03192423 (2001).
Hamilton, W. D. Geometry for the selfish herd. J. Theor. Biol. 31, 295–311. https://doi.org/10.1016/0022-5193(71)90189-5 (1971).
Stensland, E. V. A., Angerbjörn, A. & Berggren, P. E. R. Mixed species groups in mammals. Mammal Rev. 33, 205–223. https://doi.org/10.1046/j.1365-2907.2003.00022.x (2003).
Harris, I. M., Mills, H. R. & Bencini, R. Owl winter irruptions as an indicator of small mammal population cycles in the boreal forest of eastern North America. Wildl. Res. 37, 127–133. https://doi.org/10.1071/wr09040 (2010).
Orrock, J. L. & Fletcher, R. J. Jr. An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey. Proc. Biol. Sci. 281, 20140391. https://doi.org/10.1098/rspb.2014.0391 (2014).
Schmidt, K. & Kuijper, D. P. J. A “death trap” in the landscape of fear. Mammal Res. 60, 275–284. https://doi.org/10.1007/s13364-015-0229-x (2015).
Sonerud, G. A. Nest Hole Shift in Tengmalm’s Owl Aegolius funereus as Defence Against Nest Predation Involving Long-Term Memory in the Predator. J. Anim. Ecol. 54, 179–192. https://doi.org/10.2307/4629 (1985).
Tinbergen, N., Impekoven, M. & Franck, D. An Experiment on Spacing-Out as a Defence against Predation. Behaviour 28, 307–321. https://doi.org/10.1163/156853967X00064 (1967).
Angelstam, P. Predation on ground-nesting birds’ nests in relation to predator densities and habitat edge. Oikos 47, 365–373. https://doi.org/10.2307/3565450 (1986).
Schmidt, K. A. & Whelan, C. J. Nest predation on woodland songbirds: when is nest predation density dependent?. Oikos 87, 65–74. https://doi.org/10.2307/3546997 (1999).
Vickery, P. D., Hunter, M. L. Jr. & Wells, J. V. Evidence of incidental nest predation and its effects on nests of threatened grassland birds. Oikos 63, 281–288. https://doi.org/10.2307/3545389 (1992).
Martinig, A. R. & McLaren, A. A. D. Vegetated highway medians as foraging habitat for small mammals. Wildl. Soc. Bull. 43, 317–322. https://doi.org/10.1002/wsb.967 (2019).
Source: Ecology - nature.com