in

To gel or not to gel: differential expression of carrageenan-related genes between the gametophyte and tetasporophyte life cycle stages of the red alga Chondrus crispus

  • 1.

    Butterfield, N. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).

    Article  Google Scholar 

  • 2.

    Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138. https://doi.org/10.1130/G39829.1 (2018).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Bengtson, S., Sallstedt, T., Belivanova, V. & Whitehouse, M. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol. 15, 2000735. https://doi.org/10.1371/journal.pbio.2000735 (2017).

    CAS  Article  Google Scholar 

  • 4.

    Popper, Z. A. et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590 (2011).

    CAS  Article  Google Scholar 

  • 5.

    Potin, P., Bouarab, K., Kupper, F. & Kloareg, B. Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. Curr. Opin. Microbiol. 2, 276–283. https://doi.org/10.1016/S1369-5274(99)80048-4 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Bouarab, K., Potin, P., Correa, J. & Kloareg, B. Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11, 1635–1650 (1999).

    CAS  Article  Google Scholar 

  • 7.

    Genicot-Joncour, S. et al. The cyclization of the 3,6-anhydro-galactose ring of iota-carrageenan is catalyzed by two D-galactose-2,6-sulfurylases in the red alga Chondrus crispus. Plant Physiol. 151, 1609–1616 (2009).

    Article  Google Scholar 

  • 8.

    Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912. https://doi.org/10.1038/nature08937 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 9.

    Ciancia, M., Matulewicz, M. C. & Cerezo, A. S. A L-galactose-containing carrageenan from cystocarpic Gigartina skottsbergii. Phytochemistry 45, 1009–1013. https://doi.org/10.1016/S0031-9422(97)00060-5 (1997).

    CAS  Article  Google Scholar 

  • 10.

    Stortz, C. A., Cases, M. R. & Cerezo, A. S. The system of agaroids and carrageenans from the soluble fraction of the tetrasporic stage of the red seaweed Iridaea undulosa. Carbohyd. Polym. 34, 61–65. https://doi.org/10.1016/S0144-8617(97)00097-0 (1997).

    CAS  Article  Google Scholar 

  • 11.

    Takano, R., Shiomoto, K., Kamei, K., Hara, S., & Hirase, S (2003) Occurrence of carrageenan structure in an agar from the red seaweed Digenea simplex (Wulfen) C. agardh (Rhodomelaceae, Ceramiales) with a short review of carrageenan-agarocolloid hybrid in the florideophycidae. Bot. Mar. 46, 142–150. https://doi.org/10.1515/Bot.2003.015.

  • 12.

    Navarro, D. A. & Stortz, C. A. Determination of the configuration of 3,6-anhydrogalactose and cyclizable alpha-galactose 6-sulfate units in red seaweed galactans. Carbohydr. Res. 338, 2111–2118. https://doi.org/10.1016/S0008-6215(03)00345-8 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Chen, L.C.-M. & Mclachla, J. Life history of Chondrus crispus in culture. Can. J. Bot. 50, 1055–2000. https://doi.org/10.1139/b72-129 (1972).

    Article  Google Scholar 

  • 14.

    Krueger-Hadfield, S. A., Collen, J., Daguin-Thiebaut, C. & Valero, M. Genetic population structure and mating system in Chondrus crispus (Rhodophyta). J. Phycol. 47, 440–450. https://doi.org/10.1111/j.1529-8817.2011.00995.x (2011).

    Article  PubMed  Google Scholar 

  • 15.

    Fournet, I., Deslandes, E. & Floch, J. Y. Iridescence – a useful criterion to sort gametophytes from sporophytes in the red alga Chondrus crispus. J. Appl. Phycol. 5, 535–537. https://doi.org/10.1007/Bf02182512 (1993).

    Article  Google Scholar 

  • 16.

    Chen, L. C. M., Mclachla, J., Neish, A. C. & Shacklock, P. F. Ratio of kappa-carrageenan to lambda-carrageenan in nuclear phases of Rhodophycean algae, Chondrus crispus and Gigartina stellata. J. Mar. Biol. Assoc. UK 53, 11–16. https://doi.org/10.1017/S0025315400056599 (1973).

    CAS  Article  Google Scholar 

  • 17.

    McCandless, E., Craigie, J. & Walter, J. Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus. Planta 112, 201–212 (1973).

    CAS  Article  Google Scholar 

  • 18.

    Pereira, L. Population studies and carrageenan properties in eight Gigartinales (Rhodophyta) from Western Coast of Portugal. Sci. World J https://doi.org/10.1155/2013/939830 (2013).

    Article  Google Scholar 

  • 19.

    Chopin, T. & Floc’h, J.-Y. Eco-physiological and biochemical study of two of the most contrasting forms of Chondrus crispus (Rhodophyta, Gigartinales). Mar. Ecol. Prog. Ser. 81, 185–195 (1992).

    ADS  Article  Google Scholar 

  • 20.

    Tasende, M. G., Cid, M. & Fraga, M. I. Spatial and temporal variations of Chondrus crispus (Gigartinaceae, Rhodophyta) carrageenan content in natural populations from Galicia (NW Spain). J. Appl. Phycol. 24, 941–951. https://doi.org/10.1007/s10811-011-9715-y (2012).

    Article  Google Scholar 

  • 21.

    Collen, J. et al. Chondrus crispus – A present and historical model organism for red seaweeds. Adv. Bot. Res. 71, 53–89. https://doi.org/10.1016/B978-0-12-408062-1.00003-2 (2014).

    Article  Google Scholar 

  • 22.

    Correa, J. A. & Mclachlan, J. L. Endophytic algae of Chondrus crispus (Rhodophyta). 3. Host specificity. J. Phycol. 27, 448–459. https://doi.org/10.1111/j.0022-3646.1991.00448.x (1991).

    Article  Google Scholar 

  • 23.

    Krueger-Hadfield, S. A. Population structure in the haploid-diploid red alga Chondrus crispus: mating system, genetic differentiation and epidemiology. Doctoral thesis, UPMC Paris 6 with l’Universidad católica de Chile (2011).

  • 24.

    Destombe, C., Valero, M., Vernet, P. & Couvet, D. What controls haploid–diploid ratio in the red alga Gracilaria verrucosa. . J. Evol. Biol. 2, 317–338. https://doi.org/10.1046/j.1420-9101.1989.2050317.x (1989).

    Article  Google Scholar 

  • 25.

    Thornber, C. S. & Gaines, S. D. Population demographics in species with biphasic life cycles. Ecology 85, 1661–1674. https://doi.org/10.1890/02-4101 (2004).

    Article  Google Scholar 

  • 26.

    Craigie, J. & Wong, H. Carrageenan biosynthesis. Proceedings of the International Seaweed Symposium, 369–377 (1979).

  • 27.

    Ficko-Blean, E., Hervé, C. & Michel, G. Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae. PiP 2, 51–64 (2015).

    Article  Google Scholar 

  • 28.

    Wong, K. F. & Craigie, J. S. Sulfohydrolase activity and carrageenan biosynthesis in Chondrus crispus (Rhodophyceae). Plant Physiol. 61, 663–666 (1978).

    CAS  Article  Google Scholar 

  • 29.

    van de Velde, F., Knutsen, S. H., Usov, A. I., Rollema, H. S. & Cerezo, A. S. H-1 and C-13 high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci. Tech. 13, 73. https://doi.org/10.1016/S0924-2244(02)00066-3 (2002).

    Article  Google Scholar 

  • 30.

    Campo, V. L., Kawano, D. F., Silva, D. B. J. & Carvalho, I. Carrageenans: biological properties, chemical modifications and structural analysis – a review. Carbohyd. Polym. 77, 167–180 (2009).

    CAS  Article  Google Scholar 

  • 31.

    Carrington, E., Grace, S. P. & Chopin, T. Life history phases and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta). J. Phycol. 37, 699–704. https://doi.org/10.1046/j.1529-8817.2001.00169.x (2001).

    Article  Google Scholar 

  • 32.

    Hughes, J. S. & Otto, S. P. Ecology and the evolution of biphasic life cycles. Am. Nat. 154, 306–320. https://doi.org/10.1086/303241 (1999).

    Article  PubMed  Google Scholar 

  • 33.

    Krueger-Hadfield, S. A. What’s ploidy got to do with it? Understanding the evolutionary ecology of macroalgal invasions necessitates incorporating life cycle complexity. Evol. Appl. https://doi.org/10.1111/eva.12843 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Garbary, D. J., Tompkins, E., White, K., Corey, P. & Kim, J. K. Temporal and spatial variation in the distribution of life history phases of Chondrus crispus (Gigartinales, Rhodophyta). Algae 26, 61–71. https://doi.org/10.4490/algae.2011.26.1.061 (2011).

    Article  Google Scholar 

  • 35.

    Tveter-Gallagher, E., Mathieson, A. C. & Cheney, D. P. Ecology and developmental morphology of male plants of Chondrus crispus (Gigartinales, Rhodophyta). J. Phycol. 16, 257–264 (1980).

    Article  Google Scholar 

  • 36.

    Krueger-Hadfield, S. A., Roze, D., Mauger, S. & Valero, M. Intergametophytic selfing and microgeographic genetic structure shape populations of the intertidal red seaweed Chondrus crispus. Mol. Ecol. 22, 3242–3260. https://doi.org/10.1111/mec.12191 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 37.

    Yaphe, W. & Arsenault, G. P. Improved resorcinol reagent for determination of fructose and of 3,6-anhydrogalactose in polysaccharides. Anal. Biochem. 13, 143. https://doi.org/10.1016/0003-2697(65)90128-4 (1965).

    CAS  Article  Google Scholar 

  • 38.

    Dyck, L., De Wreede, R. E. & Garbary, D. Life history phases in Iridaea cordata (Gigartinaceae): relative abundance and distribution from British Columbia to California. Jap. J. Phycol. 33, 225–232 (1985).

    Google Scholar 

  • 39.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Collen, J. et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc. Natl. Acad. Sci. USA 110, 5247–5252 (2013).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucl. Acids Res. 31, 5654–5666. https://doi.org/10.1093/nar/gkg770 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527. https://doi.org/10.1038/nbt.3519 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. https://doi.org/10.1186/s13059-014-0550-8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Madden, T. L., Tatusov, R. L. & Zhang, J. Applications of network BLAST server. Methods Enzymol. 266, 131–141 (1996).

    CAS  Article  Google Scholar 

  • 45.

    Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucl. Acids Res. 43, D213-221. https://doi.org/10.1093/nar/gku1243 (2015).

    Article  PubMed  Google Scholar 

  • 46.

    Punta, M. et al. The Pfam protein families database. Nucl. Acids Res. 40, D290-301. https://doi.org/10.1093/nar/gkr1065 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  • 48.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95–98 (1998).

    Google Scholar 

  • 50.

    Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699. https://doi.org/10.1093/oxfordjournals.molbev.a003851 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Kusche-Gullberg, M. & Kjellen, L. Sulfotransferases in glycosaminoglycan biosynthesis. Curr. Opin. Struct. Biol. 13, 605–611. https://doi.org/10.1016/j.sbi.2003.08.002 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Breton, C., Fournel-Gigleux, S. & Palcic, M. M. Recent structures, evolution and mechanisms of glycosyltransferases. Curr. Opin. Struct. Biol. 22, 540–549. https://doi.org/10.1016/j.sbi.2012.06.007 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucl. Acids Res. 42, D490-495 (2014).

    CAS  Article  Google Scholar 

  • 55.

    Brawley, S. H. et al. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc. Natl. Acad. Sci. U.S.A. 114, E6361–E6370. https://doi.org/10.1073/pnas.1703088114 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Madson, M. et al. The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15, 1662–1670. https://doi.org/10.1105/tpc.009837 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Iwai, H., Masaoka, N., Ishii, T. & Satoh, S. A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc. Natl. Acad. Sci. USA 99, 16319–16324. https://doi.org/10.1073/pnas.252530499 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 58.

    Jensen, J. K. et al. Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20, 1289–1302. https://doi.org/10.1105/tpc.107.050906 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Harholt, J. et al. ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol. 140, 49–58. https://doi.org/10.1104/pp.105.072744 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Dilokpimol, A. & Geshi, N. Arabidopsis thaliana glucuronosyltransferase in family GT14. Plant Signal. Behav. https://doi.org/10.4161/psb.28891 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Knoch, E. et al. A beta-glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth. Plant J. 76, 1016–1029. https://doi.org/10.1111/tpj.12353 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 62.

    Pak, J. E. et al. X-ray crystal structure of leukocyte type core 2 beta 1,6-N-acetylglucosaminyltransferase—evidence for a convergence of metal ion-independent glycosyltransferase mechanism. J. Biol. Chem. 281, 26693–26701. https://doi.org/10.1074/jbc.M603534200 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 63.

    Bierhuizen, M. F. A., Mattei, M. G. & Fukuda, M. Expression of the developmental-I antigen by a cloned human cDNA-encoding a member of a beta-1,6-N-acetylglucosaminyltransferase gene family. Gene Dev. 7, 468–478. https://doi.org/10.1101/gad.7.3.468 (1993).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Wilson, I. B. H. The never-ending story of peptide O-xylosyltransferase. Cell. Mol. Life Sci. 61, 794–809. https://doi.org/10.1007/s00018-003-3278-2 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 65.

    Bowman, K. G. & Bertozzi, C. R. Carbohydrate sulfotransferases: mediators of extracellular communication. Chem. Biol. 6, R9–R22. https://doi.org/10.1016/S1074-5521(99)80014-3 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Michel, G., Tonon, T., Scornet, D., Cock, J. M. & Kloareg, B. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol. 188, 82–97 (2010).

    CAS  Article  Google Scholar 

  • 67.

    Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335. https://doi.org/10.1038/nature16548 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 68.

    Kloareg, B. & Quatrano, R. S. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. Annu. Rev. 26, 259–315 (1988).

    Google Scholar 

  • 69.

    Hayes, A. et al. Biodiversity of CS-proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem. J. 475, 587–620. https://doi.org/10.1042/Bcj20170820 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Esko, J. D. & Selleck, S. B. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471. https://doi.org/10.1146/annurev.biochem.71.110601.135458 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 71.

    Ficko-Blean, E. et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat. Commun. 8, 1685. https://doi.org/10.1038/s41467-017-01832-6 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    Prechoux, A., Genicot, S., Rogniaux, H. & Helbert, W. Controlling carrageenan structure using a novel formylglycine-dependent sulfatase, an endo-4S-iota-carrageenan sulfatase. Mar. Biotechnol. (NY) 15, 265–274. https://doi.org/10.1007/s10126-012-9483-y (2013).

    CAS  Article  Google Scholar 

  • 73.

    Hettle, A. G. et al. Insights into the kappa/iota-carrageenan metabolism pathway of some marine Pseudoalteromonas species. Commun. Biol. 2, 474. https://doi.org/10.1038/s42003-019-0721-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 74.

    Genicot, S. et al. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora. Front. Chem. 2, 67. https://doi.org/10.3389/fchem.2014.00067 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Gainers and losers of surface and terrestrial water resources in China during 1989–2016

    Time to revise the Sustainable Development Goals