in

Women’s socioeconomic position in ontogeny is associated with improved immune function and lower stress, but not with height

  • 1.

    Stearns, S. C. The evolution of life histories. (Oxford, 1992).

  • 2.

    Ellison, P. T. Endocrinology, energetics, and human life history: a synthetic model. Horm. Behav. 91, 97–106 (2017).

    PubMed  Google Scholar 

  • 3.

    Stoehr, A. M. & Kokko, H. Sexual dimorphism in immunocompetence: what does life-history theory predict?. Behav. Ecol. 17, 751–756 (2006).

    Google Scholar 

  • 4.

    Subramanian, S. V., Özaltin, E. & Finlay, J. E. Height of nations: a sioeconomic analysis of cohort differences and patterns among women in 54 low- to middle-income countries. PLoS ONE 6, e18962 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Stulp, G. & Barrett, L. Evolutionary perspectives on human height variation. Biol. Rev. 91, 206–234 (2016).

    PubMed  Google Scholar 

  • 6.

    Georgiev, A. V., Kuzawa, C. W. & McDade, T. W. Early developmental exposures shape trade-offs between acquired and innate immunity in humans. Evol. Med. Public Health 2016, 256–269 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Krams, I. et al. Reproduction compromises adaptive immunity in a cyprinid fish. Ecol. Res. 32, 559–566 (2017).

    CAS  Google Scholar 

  • 8.

    Baumard, N. Psychological origins of the industrial revolution. Behav. Brain Sci. 1, 1–47 (2018).

    Google Scholar 

  • 9.

    Krams, I. et al. A head start for life history development? Family income mediates associations between height and immune response in men. Am. J. Phys. Anthropol. 168, 421–427 (2019).

    PubMed  Google Scholar 

  • 10.

    Luoto, S. An updated theoretical framework for human sexual selection: from ecology, genetics, and life history to extended phenotypes. Adapt. Hum. Behav. Physiol. 5, 48–102 (2019).

    Google Scholar 

  • 11.

    Noble, K. G. et al. Family income, parental education and brain structure in children and adolescents. Nature Neurosci. 18, 773–778 (2015).

    CAS  PubMed  Google Scholar 

  • 12.

    Zeki, A. et al. Sustained economic hardship and cognitive function: The coronary artery risk development in young adults study. Am. J. Prev. Med. 52, 1–9 (2017).

    Google Scholar 

  • 13.

    Stotz, K. Why developmental niche construction is not selective niche construction: and why it matters. Interface Focus 7, 20160157 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Said-Mohamed, R., Pettifor, J. M. & Norris, S. A. Life history theory hypotheses on child growth: potential implications for short and long-term child growth, development and health. Am. J. Phys. Anthropol. 165, 4–19 (2018).

    PubMed  Google Scholar 

  • 15.

    Worthman, C. M. & Trang, K. Dynamics of body time, social time and life history at adolescence. Nature 554(7693), 451–457 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Cabeza de Baca, T., Wahl, R. A., Barnett, M. A., Figueredo, A. J. & Ellis, B. J. Adversity, adaptive calibration, and health: the case of disadvantaged families. Adapt. Hum. Behav. Physiol. 2(2), 93–115 (2016).

    Google Scholar 

  • 17.

    Bateson, P. & Gluckman, P. Plasticity, robustness, development and evolution (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  • 18.

    Morisaki, N. et al. Ecological analysis of secular trends in low birth weight births and adult height in Japan. J. Epidemiol. Comm. Health 71, 1014–1018 (2017).

    Google Scholar 

  • 19.

    Puts, D. A. Beauty and the beast: mechanisms of sexual selection in humans. Evol. Hum. Behav. 31, 157–175 (2010).

    Google Scholar 

  • 20.

    Tarka, M., Guenther, A., Niemelä, P. T., Nakagawa, S. & Noble, D. W. Sex differences in life history, behavior, and physiology along a slow-fast continuum: a meta-analysis. Behav. Ecol. Sociobiol. 72(8), 132 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex traits. Nature Rev. Genet. 20, 173–190 (2019).

    CAS  PubMed  Google Scholar 

  • 22.

    Luoto, S., Krams, I. & Rantala, M. J. A life history approach to the female sexual orientation spectrum: evolution, development, causal mechanisms, and health. Arch. Sex. Behav. 48(5), 1273–1308. https://doi.org/10.1007/s10508-018-1261-0 (2019).

    Article  PubMed  Google Scholar 

  • 23.

    Wells, J. C. K. Sexual dimorphism in body composition across human populations: associations with climate and proxies for short- and long-term energy supply. Am. J. Hum. Biol. 24, 411–419 (2012).

    PubMed  Google Scholar 

  • 24.

    García-Martínez, D., Torres-Tamayo, N., Torres-Sanchez, I., García-Río, F. & Bastir, M. Morphological and functional implications of sexual dimorphism in the human skeletal thorax. Am. J. Phys. Anthropol. 161(3), 467–477. https://doi.org/10.1002/ajpa.23051 (2016).

    Article  PubMed  Google Scholar 

  • 25.

    Fischer, B. & Mitteroecker, P. Allometry and sexual dimorphism in the human pelvis. Anatomic. Record 300(4), 698–705 (2017).

    Google Scholar 

  • 26.

    Lassek, W. D. & Gaulin, S. J. Costs and benefits of fat-free muscle mass in men: relationship to mating success, dietary requirements, and native immunity. Evol. Hum. Behav. 30(5), 322–328 (2009).

    Google Scholar 

  • 27.

    Massy-Westropp, N. M., Gill, T. K., Taylor, A. W., Bohannon, R. W. & Hill, C. L. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res. Notes 4(1), 127 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Samal, A., Subramani, V. & Marx, D. B. An analysis of sexual dimorphism in the human face. J Vis. Comm Image Represent 18, 453–463 (2007).

    Google Scholar 

  • 29.

    McDade, T. W. Life history theory and the immune system: Steps toward a human ecological immunology. Am. J. Phys. Anthropol. 122, 100–125 (2003).

    Google Scholar 

  • 30.

    Rigby, N. & Kulathinal, R. J. Genetic architecture of sexual dimorphism in humans. J. Cell. Physiol. 230(10), 2304–2310 (2015).

    CAS  PubMed  Google Scholar 

  • 31.

    Stringer, S., Polderman, T. & Posthuma, D. Majority of human traits do not show evidence for sex-specific genetic and environmental effects. Sci. Rep. 7(1), 8688 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Grasgruber, P., Sebera, M., Hrazdíra, E., Cacek, J. & Kalina, T. Major correlates of male height: a study of 105 countries. Econom. Hum. Biol. 21, 172–195 (2016).

    CAS  Google Scholar 

  • 33.

    Perkins, J. M., Subramanian, S. V., Davey Smith, G. & Özaltin, E. Adult height, nutrition, and population health. Nutr. Rev. 74, 149–165 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Hämäläinen, A., Immonen, E., Tarka, M. & Schuett, W. Evolution of sex-specific pace-of-life syndromes: causes and consequences. Behav. Ecol. Sociobiol. 72(3), 50 (2018).

    Google Scholar 

  • 35.

    Immonen, E., Hämäläinen, A., Schuett, W. & Tarka, M. Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. Behav. Ecol. Sociobiol. 72(3), 60. https://doi.org/10.1007/s00265-018-2462-1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Phalane, K. G., Tribe, C., Steel, H. C., Cholo, M. C. & Coetzee, V. Facial appearance reveals immunity in African men. Sci. Rep. 7(1), 7443 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Luoto, S., Rantala, M. J. & Krams, I. England first, America second: the ecological predictors of life history and innovation [Commentary]. Behav. Brain Sci. 42, 1. https://doi.org/10.1017/S0140525X19000165 (2019).

    Article  Google Scholar 

  • 38.

    Lourenço, A. M., Levy, A. M., Caetano, L. C., Carraro Abrahão, A. A. & Prado, J. C. Influence sexual dimorphism on the persistence of blood parasites in infected Calomys callosus. Res. Vet. Sci. 85, 515–521. https://doi.org/10.1016/j.rvsc.2008.01.008 (2008).

    Article  PubMed  Google Scholar 

  • 39.

    Klein, S. L. & Roberts, C. W. (Eds.) Sex Hormones and Immunity to Infection. (Springer Verlag, 2010).

  • 40.

    Klein, S. L. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. BioEssays 34, 1050–1059 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Giefing-Kröll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14(3), 309–321 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Xirocostas, Z. A., Everingham, S. E. & Moles, A. T. The sex with the reduced sex chromosome dies earlier: a comparison across the tree of life. Bio. Lett. 16, 20190867. https://doi.org/10.1098/rsbl.2019.0867 (2020).

    Article  Google Scholar 

  • 43.

    Krams, I. A. et al. Body height affects the strength of immune response in young men, but not young women. Sci. Rep. 4, 6223 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Skrinda, I. et al. Body height, immunity, facial and vocal attractiveness in young men. Naturwissenschaften 101, 1017 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 45.

    Rantala, M. J. et al. Adiposity, compared with masculinity, serves as a more valid cue to immunocompetence in human mate choice. Proc. R. Soc. B. 280, 20122495 (2013).

    PubMed  Google Scholar 

  • 46.

    Pļaviņa, L. & Kārkliņa, H. Sieviešu galveno antropometrisko parametru izvērtējums dažādos postnatālās ontoģenēzes periodos. Rīgas Stradiņa universitāte 2014. gada zinātniskā konference: Tēzes, Rīgā, 2014. gada 10. un 11. aprīlī. Rīga: RSU. 31. lpp. (2014).

  • 47.

    Rantala, M., J., Coetzee, V., Moore, F. R., Skrinda, I., Kecko, S., Krama, T., Kivleniece, I. & Krams, I. Facial attractiveness is related to women’s cortisol and body fat, but not with immune responsiveness. Biol. Lett. 9, 20130255 (2013).

  • 48.

    Pawłowski, B., Nowak, J., Borkowska, B., Augustyniak, D. & Drulis-Kawa, Z. Body height and immune efficacy: testing body stature as a signal of biological quality. Proc. R. Soc. B. 284, 20171372 (2017).

    PubMed  Google Scholar 

  • 49.

    Petry, L. J., Weems, L. B. & Livingstone, J. N. Relationship of stress, distress, and the immunological response to a recombinant hepatitis-B vaccine. J Family Pract. 32, 481–486 (1991).

    CAS  Google Scholar 

  • 50.

    Jabaaij, L. et al. Influence of perceived psychological stress and distress on antibody response to low dose rDNA hepatitis B vaccine. J. Psychosomat. Res. 37(4), 361–369 (1993).

    CAS  Google Scholar 

  • 51.

    Jabaaij, L. et al. Modulation of immune response to rDNA hepatitis B vaccination by psychological stress. J. Psychosomat. Res. 41, 129–137 (1996).

    CAS  Google Scholar 

  • 52.

    Ellis, B. J. & Del Giudice, M. Developmental adaptation to stress: an evolutionary perspective. Ann. Rev. Psychol. 70(1), 111–139 (2019).

    Google Scholar 

  • 53.

    LaBeaud, A. D., Malhotra, I., King, M. J., King, C. L. & King, C. H. Do antenatal parasite infections devalue childhood vaccination?. PLoS Negl. Trop. Diseases 3(5), e442 (2009).

    Google Scholar 

  • 54.

    Cooper, P. J. et al. Human infection with Ascaris lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. Infect. Immun. 69, 1574–1580 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Elias, D., Britton, S., Aseffa, A., Engers, H. & Akuffo, H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 26, 3897–3902 (2008).

    CAS  PubMed  Google Scholar 

  • 56.

    Djuardi, Y., Wammes, L. J., Supali, T., Sartono, E. & Yazdanbakhsh, M. Immunological footprint: the development of a child’s immune system in environments rich in microorganisms and parasites. Parasitology 138(12), 1508–1518 (2011).

    PubMed  Google Scholar 

  • 57.

    Blackwell, A. D., Snodgrass, J. J., Madimenos, F. C. & Sugiyama, L. S. Life history, immune function, and intestinal helminths: trade-offs among immunoglobulin E, C-reactive protein, and growth in an Amazonian population. Am. J. Hum. Biol. 22(6), 836–848 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Cao, J. et al. Early-life exposure to widespread environmental toxicants and health risk: a focus on the immune and respiratory systems. Ann. Glob. Health 82(1), 119–131 (2016).

    PubMed  Google Scholar 

  • 59.

    Lander, R. L. et al. Factors influencing growth and intestinal parasitic infections in preschoolers attending philanthropic daycare centers in Salvador, Northeast Region of Brazil. Cadernos Saúde Pública, Rio de Janeiro 28(11), 2177–2188 (2012).

    Google Scholar 

  • 60.

    Anuar, T. S., Salleh, F. M. & Moktar, N. Soil-transmitted helminth infections and associated risk factors in three Orang Asli tribes in Peninsular Malaysia. Sci. Rep. 4, 4101 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Hotez, P. J. & Gurwith, M. Europe’s neglected infections of poverty. Int. J. Infect. Diseas. 15, e611–e619 (2011).

    Google Scholar 

  • 62.

    McDade, T. W. et al. Genome-wide analysis of DNA methylation in relation to socioeconomic status during development and early adulthood. Am. J. Phys. Anthropol. 1, 1–9 (2019).

    Google Scholar 

  • 63.

    Needham, B. L. et al. Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: the multi-ethnic study of atherosclerosis. Epigenetics 10(10), 958–969 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 64.

    Kubzansky, L., Seeman, T. E. & Glymour, M. M. Biological pathways linking social conditions and health: plausible mechanisms and emerging puzzles. In Social epidemiology (eds Berkman, L. F. et al.) 512–561 (Oxford University Press, Oxford, 2014).

    Google Scholar 

  • 65.

    Gaulin, S. J. & Boster, J. S. Human marriage systems and sexual dimorphism in stature. Am. J. Phys. Anthropol. 89(4), 467–475 (1992).

    CAS  PubMed  Google Scholar 

  • 66.

    Polo, P., Fernandez, A., Muñoz-Reyes, J. A., Dufey, M. & Buunk, A. P. Intrasexual competition and height in adolescents and adults. Evol. Psychol. 16(1), 1474704917749172 (2018).

    CAS  PubMed  Google Scholar 

  • 67.

    Cornwallis, C. K. & Uller, T. Towards an evolutionary ecology of sexual traits. Trends Ecol. Evol. 25(3), 145–152 (2010).

    PubMed  Google Scholar 

  • 68.

    Jewell, S. L., Luecken, L. J., Gress-Smith, J., Crnic, K. A. & Gonzales, N. A. Economic stress and cortisol among postpartum low-income Mexican American women: buffering influence of family support. Behav. Med. 41(3), 138–144 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 69.

    Serwinski, B., Salavecz, G., Kirschbaum, C. & Steptoe, A. Associations between hair cortisol concentration, income, income dynamics and status incongruity in healthy middle-aged women. Psychoneuroendocrinol. 67, 182–188 (2016).

    CAS  Google Scholar 

  • 70.

    Ursache, A., Merz, E. C., Melvin, S., Meyer, J. & Noble, K. G. Socioeconomic status, hair cortisol and internalizing symptoms in parents and children. Psychoneuroendocrinol. 78, 142–150 (2017).

    CAS  Google Scholar 

  • 71.

    Pepper, G. V. & Nettle, D. The behavioural constellation of deprivation: causes and consequences. Behav. Brain Sci. 40, e314 (2017).

    PubMed  Google Scholar 

  • 72.

    Burns, V. E., Carroll, D., Ring, C., Harrison, L. K. & Drayson, M. Stress, coping, and hepatitis B antibody status. Psychosom. Med. 64(2), 287–293 (2002).

    PubMed  Google Scholar 

  • 73.

    Glaser, R. & Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 5(3), 243–251 (2005).

    CAS  PubMed  Google Scholar 

  • 74.

    O’Connor, T. G. et al. Prenatal maternal anxiety predicts reduced adaptive immunity in infants. Brain Behav. Immun. 32, 21–28 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Hayward, S. E. et al. A systematic review of the impact of psychosocial factors on immunity: implications for enhancing BCG response against tuberculosis. Soc. Sci. Med. Popul. Health. 10, 100522 (2020).

    Google Scholar 

  • 76.

    Cohen, B. E., Edmondson, D. & Kronish, I. M. State of the art review: depression, stress, anxiety, and cardiovascular disease. Am. J. Hypertens. 28(11), 1295–1302 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Golbidi, S., Frisbee, J. C. & Laher, I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am. J. Physiol. Heart Circ. Physiol. 308(12), 1476–1498 (2015).

    Google Scholar 

  • 78.

    Cozma, S. et al. Salivary cortisol and α-amylase: subclinical indicators of stress as cardiometabolic risk. Braz. J. Med. Biol. Res. 50(2), e5577 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    Steptoe, A. & Kiwimäki, M. Stress and cardiovascular disease. Nature Rev. Cardiol. 9, 360–370 (2012).

    CAS  Google Scholar 

  • 80.

    Kivimäki, M. & Kawachi, I. Work stress as a risk factor for cardiovascular disease. Curr. Cardiol. Rep. 17(9), 630 (2015).

    PubMed  Google Scholar 

  • 81.

    Sephton, S. E. et al. Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain Behav. Immun. 30(Suppl), S163-170 (2012).

    PubMed  Google Scholar 

  • 82.

    Spiegel, D. Minding the body: psychotherapy and cancer survival. Br. J. Health Psychol. 19(3), 465–485 (2014).

    PubMed  Google Scholar 

  • 83.

    Garland, E. L., Beck, A. C., Lipschitz, D. L. & Nakamura, Y. Dispositional mindfulness predicts attenuated waking salivary cortisol levels in cancer survivors: a latent growth curve analysis. J. Cancer Survivorship 9, 215 (2015).

    Google Scholar 

  • 84.

    McEwen, B. S. & Gianaros, P. J. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann. N. Y. Acad. Sci. 1186, 190–222 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Del Giudice, M., Ellis, B. J. & Shirtcliff, E. A. The adaptive calibration model of stress responsivity. Neurosci. Biobehav. Rev. 35(7), 1562–1592 (2011).

    PubMed  Google Scholar 

  • 86.

    Rantala, M. J., Luoto, S., Krams, I. & Karlsson, H. Depression subtyping based on evolutionary psychiatry: proximate mechanisms and ultimate functions. Brain Behav. Immun. 69, 603–617 (2018).

    PubMed  Google Scholar 

  • 87.

    Rantala, M. J., Luoto, S., Krama, T. & Krams, I. Eating disorders: an evolutionary psychoneuroimmunological approach. Front. Psychol. 10, 2200. https://doi.org/10.3389/fpsyg.2019.02200 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 88.

    Greff, M. J. et al. Hair cortisol analysis: an update on methodological considerations and clinical applications. Clin. Biochem. 63, 1–9 (2018).

    PubMed  Google Scholar 

  • 89.

    Khoury, J. E., Enlow, M. B., Plamondon, A. & Lyons-Ruth, K. The Association between adversity and hair cortisol levels in humans: a meta-analysis. Psychoneuroendocrinol. 103, 104–117 (2019).

    CAS  Google Scholar 

  • 90.

    Doyle, H. H. & Murphy, A. Z. Sex differences in innate immunity and its impact on opioid pharmacology. J. Neurosci. Res. 95(1–2), 487–489 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 91.

    Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nature Rev. Immunol. 8, 737–744 (2008).

    CAS  Google Scholar 

  • 92.

    Hao, S. et al. Modulation of 17b-estradiol on the number and cytotoxicity of NK cells in vivo related to MCM and activating receptors. Int. Immunopharmacol. 7, 1765–1775 (2007).

    CAS  PubMed  Google Scholar 

  • 93.

    Ashcroft, G. S., Greenwell-Wild, T., Horan, M. A., Wahl, S. M. & Ferguson, M. W. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 155, 1137–1146 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 94.

    Krams, I. et al. Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comp. Biochem. Physiol. A: Mol. Integrat. Physiol. 161, 422–428 (2012).

    CAS  Google Scholar 

  • 95.

    Stoll, M. L. Interactions of the innate and adaptive arms of the immune system in the pathogenesis of spondyloarthritis. Clin. Exp. Rheumatol. 29, 322–330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 96.

    Klasing, K. C. & Leshchinsky, T. V. Functions, costs, and bene- fits of the immune system during development and growth. Ostrich 69, 2817–2832 (1999).

    Google Scholar 

  • 97.

    McDade, T. W., Georgiev, A. V. & Kuzawa, C. V. Trade-offs between acquired and innate immune defenses in humans. Evol. Med. Publ. Health 2016(1), 1–16 (2016).

    Google Scholar 

  • 98.

    Elia, M. Organ and tissue contribution to metabolic rate. in Energy Metabolism: Tissue Determinants and Cellular Corollaries (eds. McKinney, J. M. & Tucker, H. N.) 61–80. (Raven, 1992).

  • 99.

    Muehlenbein, M. P., Hirschtick, J. L. & Bonner, J. Z. Toward quantifying the usage costs of human immunity: altered metabolic rates and hormone levels during acute immune activation in men. Am. J. Human Biol. 22, 546–556 (2010).

    Google Scholar 

  • 100.

    Taylor, S. E., Lehman, B. J., Kiefe, C. I. & Seeman, T. E. Relationship of early life stress and psychological functioning to adult C-reactive protein in the coronary artery risk development in young adults study. Biol. Psych. 60, 819–824 (2006).

    CAS  Google Scholar 

  • 101.

    Danese, A. et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch. Pediatr. Adolesc. Med. 163, 1135–1143 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 102.

    Miller, G. E. et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc. Natl. Acad. Sci. USA 106, 14716–14721 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 103.

    Miller, G. E. & Chen, E. Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychol. Sci. 21, 848–856 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 104.

    Archer, J. The reality and evolutionary significance of human psychological sex differences. Biol. Rev. 94(4), 1381–1415 (2019).

    PubMed  Google Scholar 

  • 105.

    Hartling, C. et al. Interaction of HPA axis genetics and early life stress shapes emotion recognition in healthy adults. Psychoneuroendocrinol. 99, 28–37 (2019).

    Google Scholar 

  • 106.

    Frankenhuis, W. E., Nettle, D. & Dall, S. R. A case for environmental statistics of early-life effects. Phil. Trans. R. Soc. B 374(1770), 20180110 (2019).

    PubMed  Google Scholar 

  • 107.

    Foo, Y. Z. et al. Immune function during early adolescence positively predicts adult facial sexual dimorphism in both men and women. Evol. Hum. Behav. 1, 1. https://doi.org/10.1016/j.evolhumbehav.2020.02.002 (2020).

    Article  Google Scholar 

  • 108.

    Cohen, S., Miller, G. E. & Rabin, B. S. Psychological stress and antibody response to immunization: a critical review of the human literature. Psychosom. Med. 63, 7–18 (2001).

    CAS  PubMed  Google Scholar 

  • 109.

    Rantala, M. J. et al. Evidence for the stress-linked immunocompetence handicap hypothesis in humans. Nature Comm. 3, 694 (2012).

    ADS  Google Scholar 

  • 110.

    Tyrrell, J. et al. Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank. Br. Med. J. 352, 582 (2016).

    Google Scholar 

  • 111.

    Lavrinoviča, I., Lavriņenko, O., & Teivāns-Treinovskis, J. Population income differentiation and its influence on the crime. in Proceedings of the XIII International Scientific Conference Sustainable Business under Changing Economic Conditions (Dotkus, W., Holger, B., Žilys, J., Rozīte, M., Rumpīte, D., & Vīksne, I., Eds.) Rīga, Latvia: School of Business Administration Turība, pp. 242–251. Retrieved from: https://aurora.turiba.lv/bti/Editor/Manuscript/Proceeding/ (2012).

  • 112.

    R Core Team. R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2018).

  • 113.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).

    MathSciNet  MATH  Google Scholar 


  • Source: Ecology - nature.com

    Gainers and losers of surface and terrestrial water resources in China during 1989–2016

    Time to revise the Sustainable Development Goals