in

Meta-analysis of multidecadal biodiversity trends in Europe

  • 1.

    WWF. Living Planet Report 2016. Risk and Resilience in a New Era. (Gland, Switzerland: WWW International, 2016).

  • 2.

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, 2019).

  • 5.

    Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).

    Google Scholar 

  • 6.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).

    Google Scholar 

  • 8.

    Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208 (2008).

    CAS  PubMed  Google Scholar 

  • 9.

    Thomas, J. A. Butterfly communities under threat. Science 353, 216–218 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Chamberlain, D. E. & Fuller, R. J. Local extinctions and changes in species richness of lowland farmland birds in England and Wales in relation to recent changes in agricultural land-use. Agric. Ecosyst. Environ. 78, 1–17 (2000).

    Google Scholar 

  • 12.

    Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).

    PubMed  Google Scholar 

  • 13.

    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Haase, P. et al. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci. Total Environ. 658, 1531–1538 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Baranov, V., Jourdan, J., Pilotto, F., Wagner, R. & Haase, P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. https://doi.org/10.1111/cobi.13477 (2020).

  • 16.

    Martinho, F. et al. Does the flatfish community of the Mondego estuary (Portugal) reflect environmental changes? J. Appl. Ichthyol. 26, 843–852 (2010).

    Google Scholar 

  • 17.

    Knapp, S., Kühn, I., Stolle, J. & Klotz, S. Changes in the functional composition of a Central European urban flora over three centuries. Perspect. Plant Ecol. Evol. Syst. 12, 235–244 (2010).

    Google Scholar 

  • 18.

    Förster, A., Becker, T., Gerlach, A., Meesenburg, H. & Leuschner, C. Long-term change in understorey plant communities of conventionally managed temperate deciduous forests: effects of nitrogen deposition and forest management. J. Veg. Sci. 28, 747–761 (2017).

    Google Scholar 

  • 19.

    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Primack, R. B. et al. Biodiversity gains? The debate on changes in local- vs global-scale species richness. Biol. Conserv. 219, A1–A3 (2018).

    Google Scholar 

  • 22.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 23.

    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, s41559–016 (2017). 0067–016.

    Google Scholar 

  • 24.

    Gibson-Reinemer, D. K., Sheldon, K. S. & Rahel, F. J. Climate change creates rapid species turnover in montane communities. Ecol. Evol. 5, 2340–2347 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Domisch, S. et al. Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol. 19, 752–762 (2013).

    ADS  Google Scholar 

  • 26.

    Mirtl, M. et al. Genesis, goals and achievements of Long-Term Ecological Research at the global scale: a critical review of ILTER and future directions. Sci. Total Environ. 626, 1439–1462 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

    ADS  CAS  Google Scholar 

  • 28.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).

    ADS  Google Scholar 

  • 31.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Google Scholar 

  • 33.

    Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Valtonen, A. et al. Long‐term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 86, 730–738 (2017).

    PubMed  Google Scholar 

  • 35.

    Thomas, C. D. Local diversity stays about the same, regional diversity increases, and global diversity declines. Proc. Natl Acad. Sci. USA 110, 19187–19188 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Larsen, S., Chase, J. M., Durance, I. & Ormerod, S. J. Lifting the veil: richness measurements fail to detect systematic biodiversity change over three decades. Ecology 99, 1316–1326 (2018).

    PubMed  Google Scholar 

  • 37.

    Olden, J. D. & Poff, N. L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Nat. 162, 442–460 (2003).

    PubMed  Google Scholar 

  • 38.

    Winter, M. et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA 106, 21721–21725 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 39.

    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).

    Google Scholar 

  • 40.

    Antão, L. H., Pöyry, J., Leinonen, R. & Roslin, T. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 29, 896–907 (2020).

    Google Scholar 

  • 41.

    Hastings, A. et al. Transient phenomena in ecology. Science 361, eaat6412 (2018).

    PubMed  Google Scholar 

  • 42.

    Gaüzère, P., Iversen, L. L., Barnagaud, J.-Y., Svenning, J.-C. & Blonder, B. Empirical predictability of community responses to climate change. Front. Ecol. Evol. 6, 186 (2018).

  • 43.

    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 44.

    Monteith, D. T. et al. Biological responses to the chemical recovery of acidified fresh waters in the UK. Environ. Pollut. 137, 83–101 (2005).

    CAS  PubMed  Google Scholar 

  • 45.

    Rose, R. et al. Evidence for increases in vegetation species richness across UK Environmental Change Network sites linked to changes in air pollution and weather patterns. Ecol. Indic. 68, 52–62 (2016).

    CAS  Google Scholar 

  • 46.

    Kuemmerle, T. et al. Hotspots of land use change in Europe. Environ. Res. Lett. 11, 064020 (2016).

    ADS  Google Scholar 

  • 47.

    Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M. & Gemmell, N. J. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 20, 470–474 (2005).

    PubMed  Google Scholar 

  • 48.

    Martínez‐Abraín, A., Jiménez, J. & Oro, D. Pax Romana: ‘refuge abandonment’ and spread of fearless behavior in a reconciling world. Anim. Conserv. 22, 3–13 (2019).

    Google Scholar 

  • 49.

    Kröel-Dulay, G. et al. Increased sensitivity to climate change in disturbed ecosystems. Nat. Commun. 6, 1–7 (2015).

    Google Scholar 

  • 50.

    Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).

    Google Scholar 

  • 52.

    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

    PubMed  Google Scholar 

  • 53.

    Habel, J. C. et al. Butterfly community shifts over two centuries. Conserv. Biol. 30, 754–762 (2016).

    PubMed  Google Scholar 

  • 54.

    Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 16, 222–230 (2018).

    Google Scholar 

  • 55.

    Silliman, B. R. et al. Are the ghosts of nature’s past haunting ecology today? Curr. Biol. 28, R532–R537 (2018).

    CAS  PubMed  Google Scholar 

  • 56.

    Battarbee, R. W. et al. Recovery of UK lakes from acidification: An assessment using combined palaeoecological and contemporary diatom assemblage data. Ecol. Indic. 37, 365–380 (2014).

    CAS  Google Scholar 

  • 57.

    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).

  • 58.

    Albrecht, J. et al. Logging and forest edges reduce redundancy in plant-frugivore networks in an old-growth European forest. J. Ecol. 101, 990–999 (2013).

    Google Scholar 

  • 59.

    Kareiva, P., Marvier, M. & Silliman, B. Effective Conservation Science: Data Not Dogma. (Oxford University Press, 2017).

  • 60.

    Haase, P. et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018).

    ADS  PubMed  Google Scholar 

  • 61.

    Heffernan, J. B. et al. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front. Ecol. Environ. 12, 5–14 (2014).

    Google Scholar 

  • 62.

    Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).

    PubMed  Google Scholar 

  • 63.

    Hallett, L. et al. codyn: Community Dynamics Metrics. R package version 2.0.0. (2018).

  • 64.

    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmospheres 113, (2008).

  • 65.

    Kendall, M. G. Rank correlation methods. (1948).

  • 66.

    Mann, H. B. Nonparametric Tests Against Trend. Econometrica 13, 245–259 (1945).

    MathSciNet  MATH  Google Scholar 

  • 67.

    Venerables, W. N. & Ripley, B. D. Modern applied statistics with S. (new york: Springer, 2002).

  • 68.

    Hamed, K. H. & Rao, A. R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 204, 182–196 (1998).

    ADS  Google Scholar 

  • 69.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 70.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Google Scholar 

  • 71.

    Everaert, G., Deschutter, Y., De Troch, M., Janssen, C. R. & De Schamphelaere, K. Multimodel inference to quantify the relative importance of abiotic factors in the population dynamics of marine zooplankton. J. Mar. Syst. 181, 91–98 (2018).

    Google Scholar 

  • 72.

    Anderson, D. R. & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 66, 912–918 (2002).

    Google Scholar 

  • 73.

    Calcagno, V. glmulti: Model selection and multimodel inference made easy. R package version 1.0.7. (2013).

  • 74.

    EEA. Biogeographical regions and Marine regions and subregions under the Marine Strategy Framework Directive. https://www.eea.europa.eu/data-and-maps (2016).


  • Source: Ecology - nature.com

    Gainers and losers of surface and terrestrial water resources in China during 1989–2016

    Time to revise the Sustainable Development Goals