WWF. Living Planet Report 2016. Risk and Resilience in a New Era. (Gland, Switzerland: WWW International, 2016).
Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, 2019).
Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).
Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208 (2008).
Thomas, J. A. Butterfly communities under threat. Science 353, 216–218 (2016).
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
Chamberlain, D. E. & Fuller, R. J. Local extinctions and changes in species richness of lowland farmland birds in England and Wales in relation to recent changes in agricultural land-use. Agric. Ecosyst. Environ. 78, 1–17 (2000).
Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).
Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).
Haase, P. et al. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci. Total Environ. 658, 1531–1538 (2019).
Baranov, V., Jourdan, J., Pilotto, F., Wagner, R. & Haase, P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. https://doi.org/10.1111/cobi.13477 (2020).
Martinho, F. et al. Does the flatfish community of the Mondego estuary (Portugal) reflect environmental changes? J. Appl. Ichthyol. 26, 843–852 (2010).
Knapp, S., Kühn, I., Stolle, J. & Klotz, S. Changes in the functional composition of a Central European urban flora over three centuries. Perspect. Plant Ecol. Evol. Syst. 12, 235–244 (2010).
Förster, A., Becker, T., Gerlach, A., Meesenburg, H. & Leuschner, C. Long-term change in understorey plant communities of conventionally managed temperate deciduous forests: effects of nitrogen deposition and forest management. J. Veg. Sci. 28, 747–761 (2017).
Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).
Primack, R. B. et al. Biodiversity gains? The debate on changes in local- vs global-scale species richness. Biol. Conserv. 219, A1–A3 (2018).
Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, s41559–016 (2017). 0067–016.
Gibson-Reinemer, D. K., Sheldon, K. S. & Rahel, F. J. Climate change creates rapid species turnover in montane communities. Ecol. Evol. 5, 2340–2347 (2015).
Domisch, S. et al. Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol. 19, 752–762 (2013).
Mirtl, M. et al. Genesis, goals and achievements of Long-Term Ecological Research at the global scale: a critical review of ILTER and future directions. Sci. Total Environ. 626, 1439–1462 (2018).
Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).
Valtonen, A. et al. Long‐term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 86, 730–738 (2017).
Thomas, C. D. Local diversity stays about the same, regional diversity increases, and global diversity declines. Proc. Natl Acad. Sci. USA 110, 19187–19188 (2013).
Larsen, S., Chase, J. M., Durance, I. & Ormerod, S. J. Lifting the veil: richness measurements fail to detect systematic biodiversity change over three decades. Ecology 99, 1316–1326 (2018).
Olden, J. D. & Poff, N. L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Nat. 162, 442–460 (2003).
Winter, M. et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA 106, 21721–21725 (2009).
Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).
Antão, L. H., Pöyry, J., Leinonen, R. & Roslin, T. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 29, 896–907 (2020).
Hastings, A. et al. Transient phenomena in ecology. Science 361, eaat6412 (2018).
Gaüzère, P., Iversen, L. L., Barnagaud, J.-Y., Svenning, J.-C. & Blonder, B. Empirical predictability of community responses to climate change. Front. Ecol. Evol. 6, 186 (2018).
Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).
Monteith, D. T. et al. Biological responses to the chemical recovery of acidified fresh waters in the UK. Environ. Pollut. 137, 83–101 (2005).
Rose, R. et al. Evidence for increases in vegetation species richness across UK Environmental Change Network sites linked to changes in air pollution and weather patterns. Ecol. Indic. 68, 52–62 (2016).
Kuemmerle, T. et al. Hotspots of land use change in Europe. Environ. Res. Lett. 11, 064020 (2016).
Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M. & Gemmell, N. J. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 20, 470–474 (2005).
Martínez‐Abraín, A., Jiménez, J. & Oro, D. Pax Romana: ‘refuge abandonment’ and spread of fearless behavior in a reconciling world. Anim. Conserv. 22, 3–13 (2019).
Kröel-Dulay, G. et al. Increased sensitivity to climate change in disturbed ecosystems. Nat. Commun. 6, 1–7 (2015).
Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).
Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).
Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).
Habel, J. C. et al. Butterfly community shifts over two centuries. Conserv. Biol. 30, 754–762 (2016).
Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 16, 222–230 (2018).
Silliman, B. R. et al. Are the ghosts of nature’s past haunting ecology today? Curr. Biol. 28, R532–R537 (2018).
Battarbee, R. W. et al. Recovery of UK lakes from acidification: An assessment using combined palaeoecological and contemporary diatom assemblage data. Ecol. Indic. 37, 365–380 (2014).
Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
Albrecht, J. et al. Logging and forest edges reduce redundancy in plant-frugivore networks in an old-growth European forest. J. Ecol. 101, 990–999 (2013).
Kareiva, P., Marvier, M. & Silliman, B. Effective Conservation Science: Data Not Dogma. (Oxford University Press, 2017).
Haase, P. et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018).
Heffernan, J. B. et al. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front. Ecol. Environ. 12, 5–14 (2014).
Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).
Hallett, L. et al. codyn: Community Dynamics Metrics. R package version 2.0.0. (2018).
Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmospheres 113, (2008).
Kendall, M. G. Rank correlation methods. (1948).
Mann, H. B. Nonparametric Tests Against Trend. Econometrica 13, 245–259 (1945).
Venerables, W. N. & Ripley, B. D. Modern applied statistics with S. (new york: Springer, 2002).
Hamed, K. H. & Rao, A. R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 204, 182–196 (1998).
Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
Everaert, G., Deschutter, Y., De Troch, M., Janssen, C. R. & De Schamphelaere, K. Multimodel inference to quantify the relative importance of abiotic factors in the population dynamics of marine zooplankton. J. Mar. Syst. 181, 91–98 (2018).
Anderson, D. R. & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 66, 912–918 (2002).
Calcagno, V. glmulti: Model selection and multimodel inference made easy. R package version 1.0.7. (2013).
EEA. Biogeographical regions and Marine regions and subregions under the Marine Strategy Framework Directive. https://www.eea.europa.eu/data-and-maps (2016).
Source: Ecology - nature.com