in

Species identification, phylogenetic analysis and detection of herbicide-resistant biotypes of Amaranthus based on ALS and ITS

  • 1.

    Sauer, J. D. Revision of the dioecious amaranths. Madroño 13, 5–46 (1955).

    Google Scholar 

  • 2.

    Bayón, N. D. Revisión taxonómica de las especies monoicas de Amaranthus L. (Amaranthaceae): Amaranthus subg. Albersia y Amaranthus subg. Amaranthus. Ann. Mo. Bot. Gard. 101, 261–383 (2015).

    Article  Google Scholar 

  • 3.

    Plant Protection and Quarantine. Weed risk assessment for Amaranthus palmeri (Amaranthaceae) – Palmer amaranth, ver. 3. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine (PPQ), Raleigh, NC. 27 pp. (2020).

  • 4.

    CABI. Fallopia japonica. Invasive Species Compendium. Wallingford, UK: CAB International. https://www.cabi.org/isc (2020).

  • 5.

    Mosyakin, S. L. & Robertson, K. R. New infrageneric taxa and combinations in Amaranthus (Amaranthaceae). Ann. Bot. Fenn. 33, 275–281 (1996).

    Google Scholar 

  • 6.

    Stetter, M. G. & Schmid, K. J. Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol. Phylogenet. Evol. 109, 80–92 (2017).

    Article  Google Scholar 

  • 7.

    Waselkov, K. E., Boleda, A. S. & Olsen, K. M. A phylogeny of the genus Amaranthus (Amaranthaceae) based on several low-copy nuclear loci and chloroplast regions. Syst. Bot. 43, 439–458 (2018).

    Article  Google Scholar 

  • 8.

    Heap, I. The International Survey of Herbicide Resistant Weeds. (Available at: www.weedscience.org; Accessed on: 16 March, 2020)

  • 9.

    Ward, S. M., Webster, T. M. & Steckel, L. E. Palmer Amaranth (Amaranthus palmeri): A review. Weed Tech. 27, 12–27 (2013).

    Article  Google Scholar 

  • 10.

    Hager, A. G., Wax, L. M., Stoller, E. W. & Bollero, G. A. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 50, 607–610 (2002).

    CAS  Article  Google Scholar 

  • 11.

    Delye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).

    CAS  Article  Google Scholar 

  • 12.

    Jasieniuk, M., Brule-Babel, A. L. & Morrison, I. N. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44, 176–193 (1996).

    CAS  Article  Google Scholar 

  • 13.

    Umbarger, H. E. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem. 47, 533–606 (1978).

    CAS  Article  Google Scholar 

  • 14.

    Tranel, P. J., Jiang, W. L., Patzoldt, W. L. & Wright, T. R. Intraspecific variability of the acetolactate synthase gene. Weed Sci. 52, 236–241 (2004).

    CAS  Article  Google Scholar 

  • 15.

    Tranel, P. J., Wright, T. R. & Heap, I. M. Mutations in herbicide-resistant weeds to ALS inhibitors. (Available at: https://www.weedscience.com; Accessed on: 16 March, 2020).

  • 16.

    Tranel, P. J. & Wright, T. R. Resistance of weeds to ALS-inhibiting herbicides: what have we learned?. Weed Sci. 50, 700–712 (2002).

    CAS  Article  Google Scholar 

  • 17.

    Riggins, C. W., Peng, Y. H., Stewart, C. N. Jr. & Tranel, P. J. Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Pest Manag. Sci. 66, 1042–1052 (2010).

    CAS  Article  Google Scholar 

  • 18.

    Baldwin, B. G., Sanderson, M. J. & Porter, J. M. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. MO. Bot. Gard. 82, 247–277 (1995).

    Article  Google Scholar 

  • 19.

    China Plant BOL Group et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646 (2011).

    ADS  Article  Google Scholar 

  • 20.

    Song, B. H., Chen, Z. D. & Wang, X. Q. Sequence analysis of the ITS region of nuclear ribosomal DNA (nrDNA) in Chinese Amaranthus and its systematic utility. Acta Botan. Sin. 11, 1184–1189 (2000).

    Google Scholar 

  • 21.

    Xu, H., Li, Z. Y. & Li, J. S. Phylogenetic analysis of alien species of Amaranthus in China based on ITS sequences. Guihaia 37, 139–144 (2017).

    Google Scholar 

  • 22.

    Murphy, B. P., Plewa, D. E., Phillippi, E., Bissonnette, S. M. & Tranel, P. J. A quantitative assay for Amaranthus palmeri identification. Pest Manag. Sci. 73, 2221–2224 (2017).

    CAS  Article  Google Scholar 

  • 23.

    Murphy, B. P. & Tranel, P. J. Identification and validation of Amaranthus species-specific SNPs within the its region: Applications in quantitative species identification. Crop Sci. 58, 304–311 (2018).

    CAS  Article  Google Scholar 

  • 24.

    Wassom, J. J. & Tranel, P. J. Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species. J. Hered. 96, 410–416 (2005).

    CAS  Article  Google Scholar 

  • 25.

    Nandula, V. K. et al. EPSPS Amplification in Glyphosate-Resistant Spiny Amaranth (Amaranthus spinosus): A case of gene transfer via interspecific hybridization from glyphosate-resistant Palmer Amaranth (Amaranthus palmeri). Pest Manag. Sci. 70, 1902–1909 (2014).

    CAS  Article  Google Scholar 

  • 26.

    Molin, W. T. & Nandula, V. K. Morphological characterization of Amaranthus palmeri x A. spinosus hybrids. AJPS 8, 1499–1510 (2017).

    Article  Google Scholar 

  • 27.

    Pratt, D. B. & Clark, L. G. Amaranthus rudis and A. tuberculatus, one species or two?. J. Torrey Bot. Soc. 128, 282–296 (2001).

    Article  Google Scholar 

  • 28.

    Mosyakin, S. L. & Robertson, K. R. Amaranthus. In Flora of North America and North of Mexico 405–410 (Oxford University Press, Oxford, 2003).

    Google Scholar 

  • 29.

    Sauer, J. D. The grain amaranths and their relatives: A revised taxonomic and geographic survey. Ann. Mo. Bot. Gard. 54, 103–137 (1967).

    Article  Google Scholar 

  • 30.

    Sogbohossou, O. E. D. & Achigan-Dako, E. G. Phenetic differentiation and use-type delimitation in Amaranthus spp. from worldwide origins. Sci. Hortic. 178, 31–42 (2014).

    Article  Google Scholar 

  • 31.

    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. NAR 30, 3059–3066 (2002).

    CAS  Article  Google Scholar 

  • 32.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    CAS  Article  Google Scholar 

  • 33.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  Article  Google Scholar 

  • 34.

    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Building a more sustainable MIT — from home

    Unraveling ecosystem functioning in intertidal soft sediments: the role of density-driven interactions