in

Factors controlling the distributions of dissolved organic matter in the East China Sea during summer

  • 1.

    Hedges, J. I. & Oades, J. M. Comparative organic geochemistries of soils and marine sediments. Org. Geochem. 27, 319–361. https://doi.org/10.1016/S0146-6380(97)00056-9 (1997).

    CAS  Article  Google Scholar 

  • 2.

    Hansell, D. A. In Carlson Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 685–715 (Academic Press, Cambridge, 2002).

    Google Scholar 

  • 3.

    Lechtenfeld, O. J. et al. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean. Geochim. Cosmochim. Acta 126, 321–337. https://doi.org/10.1016/j.gca.2013.11.009 (2014).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Hansell, D. A. & Carlson, C. A. Marine dissolved organic matter and the carbon cycle. Oceanography 14, 41–49 (2001).

    Article  Google Scholar 

  • 5.

    Carlson, C. A. et al. Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin. Deep Sea Res. Part II 57, 1433–1445. https://doi.org/10.1016/j.dsr2.2010.02.013 (2010).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Liu, Q. et al. Estimating dissolved organic carbon inventories in the East China Sea using remote-sensing data. J. Geophys. Res. 119, 6557–6574. https://doi.org/10.1002/2014jc009868 (2014).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Letscher, R. T., Hansell, D. A., Carlson, C. A., Lumpkin, R. & Knapp, A. N. Dissolved organic nitrogen in the global surface ocean: Distribution and fate. Glob. Biogeochem. Cycles 27, 141–153. https://doi.org/10.1029/2012GB004449 (2013).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Micro 8, 593–599 (2010).

    CAS  Article  Google Scholar 

  • 9.

    Chen, C.-T.A. & Wang, S.-L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. J. Geophys. Res. 104, 20675–20686. https://doi.org/10.1029/1999JC900055 (1999).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Gu, H., Moore, W. S., Zhang, L., Du, J. & Zhang, J. Using radium isotopes to estimate the residence time and the contribution of submarine groundwater discharge (SGD) in the Changjiang effluent plume, East China Sea. Cont. Shelf Res. 35, 95–107. https://doi.org/10.1016/j.csr.2012.01.002 (2012).

    ADS  Article  Google Scholar 

  • 11.

    Kim, J., Cho, H.-M. & Kim, G. Significant production of humic fluorescent dissolved organic matter in the continental shelf waters of the northwestern Pacific Ocean. Sci. Rep. 8, 4887. https://doi.org/10.1038/s41598-018-23299-1 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Su, Y. Water Masses in China Sea (Kluwer Academic Publishers, Boston, 1994).

    Google Scholar 

  • 13.

    Ogawa, H., Usui, T. & Koike, I. Distribution of dissolved organic carbon in the East China Sea. Deep Sea Res. Part II 50, 353–366. https://doi.org/10.1016/S0967-0645(02)00459-9 (2003).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Zhang, J., Liu, S. M., Ren, J. L., Wu, Y. & Zhang, G. L. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Prog. Oceanogr. 74, 449–478. https://doi.org/10.1016/j.pocean.2007.04.019 (2007).

    ADS  Article  Google Scholar 

  • 15.

    Kwon, H. K. et al. Significant and conservative long-range transport of dissolved organic nutrients in the Changjiang diluted water. Sci. Rep. 8, 12768. https://doi.org/10.1038/s41598-018-31105-1 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Zhang, J. Biogeochemistry of Chinese estuarine and coastal waters: nutrients, trace metals and biomarkers. Reg. Environ. Change 3, 65–76. https://doi.org/10.1007/s10113-001-0039-3 (2002).

    Article  Google Scholar 

  • 17.

    Sun, Q., Wang, C., Wang, P., Hou, J. & Ao, Y. Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze Estuary. Environ. Sci. Pollut. Res. 21, 3460–3473. https://doi.org/10.1007/s11356-013-2287-4 (2014).

    CAS  Article  Google Scholar 

  • 18.

    Gao, L., Fan, D., Li, D. & Cai, J. Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China. Mar. Environ. Res. 69, 187–197. https://doi.org/10.1016/j.marenvres.2009.10.004 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Zhu, W.-Z., Zhang, H.-H., Zhang, J. & Yang, G.-P. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea. J. Mar. Syst. 180, 9–23. https://doi.org/10.1016/j.jmarsys.2017.12.003 (2018).

    Article  Google Scholar 

  • 20.

    Gao, X. & Song, J. Main Geochemical Characteristics and Key Biogeochemical Carbon Processes in the East China Sea. J. Coast. Res. 2006, 1330–1339, 1310 (2006).

  • 21.

    Chen, C.-T.A. Distributions of nutrients in the East China Sea and the South China Sea connection. J. Oceanogr. 64, 737–751. https://doi.org/10.1007/s10872-008-0062-9 (2008).

    CAS  Article  Google Scholar 

  • 22.

    Stedmon, C. A. & Markager, S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 50, 686–697 (2005).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Yamashita, Y., Jaffé, R., Maie, N. & Tanoue, E. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol. Oceanogr. 53, 1900–1908 (2008).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Fellman, J. B., Hood, E. & Spencer, R. G. M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol. Oceanogr. 55, 2452–2462. https://doi.org/10.4319/lo.2010.55.6.2452 (2010).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Carlson, C. A. & Ducklow, H. W. Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations. Deep Sea Res. Part II 42, 639–656. https://doi.org/10.1016/0967-0645(95)00023-J (1995).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Doval, M. D. & Hansell, D. A. Organic carbon and apparent oxygen utilization in the western South Pacific and the central Indian Oceans. Mar. Chem. 68, 249–264. https://doi.org/10.1016/S0304-4203(99)00081-X (2000).

    CAS  Article  Google Scholar 

  • 27.

    Hansell, D. A. & Carlson, C. A. Net community production of dissolved organic carbon. Glob. Biogeochem. Cycles 12, 443–453. https://doi.org/10.1029/98gb01928 (1998).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Chen, Y., Yang, G.-P., Xia, Q.-Y. & Wu, G.-W. Enrichment and characterization of dissolved organic matter in the surface microlayer and subsurface water of the South Yellow Sea. Mar. Chem. 182, 1–13. https://doi.org/10.1016/j.marchem.2016.04.001 (2016).

    CAS  Article  Google Scholar 

  • 29.

    Zhao, L. & Gao, L. Dynamics of dissolved and particulate organic matter in the Changjiang (Yangtze River) Estuary and the adjacent East China Sea shelf. J. Mar. Syst. 198, 103188. https://doi.org/10.1016/j.jmarsys.2019.103188 (2019).

    Article  Google Scholar 

  • 30.

    Hansell, D. A. & Carlson, C. A. Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn. Deep Sea Res. Part II 48, 1649–1667. https://doi.org/10.1016/S0967-0645(00)00153-3 (2001).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Koike, I. & Tupas, L. Total dissolved nitrogen in the Northern North Pacific assessed by a high-temperature combustion method. Mar. Chem. 41, 209–214. https://doi.org/10.1016/0304-4203(93)90121-4 (1993).

    CAS  Article  Google Scholar 

  • 32.

    Vidal, M., Duarte, C. M. & Agusti, S. Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean. Limnol. Oceanogr. 44, 106–115. https://doi.org/10.4319/lo.1999.44.1.0106 (1999).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Chen, Y., Yang, G.-P., Liu, L., Zhang, P.-Y. & Leng, W.-S. Sources, behaviors and degradation of dissolved organic matter in the East China Sea. J. Mar. Syst. 155, 84–97. https://doi.org/10.1016/j.jmarsys.2015.11.005 (2016).

    Article  Google Scholar 

  • 34.

    Guo, J.-Q. et al. Composition and bioavailability of dissolved organic matter in different water masses of the East China sea. Estuar. Coast. Shelf Sci. 212, 189–202. https://doi.org/10.1016/j.ecss.2018.07.009 (2018).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Kim, T.-H. & Kim, G. Factors controlling the C:N: P stoichiometry of dissolved organic matter in the N-limited, cyanobacteria-dominated East/Japan Sea. J. Mar. Syst. 115–116, 1–9. https://doi.org/10.1016/j.jmarsys.2013.01.002 (2013).

    Article  Google Scholar 

  • 36.

    Murphy, K. R., Stedmon, C. A., Wenig, P. & Bro, R. OpenFluor- an online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 6, 658–661. https://doi.org/10.1039/C3AY41935E (2014).

    CAS  Article  Google Scholar 

  • 37.

    Coble, P. G. Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107, 402–418. https://doi.org/10.1021/cr050350+ (2007).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 38.

    Kim, J. & Kim, G. Inputs of humic fluorescent dissolved organic matter via submarine groundwater discharge to coastal waters off a volcanic island (Jeju, Korea). Sci. Rep. 7, 7921. https://doi.org/10.1038/s41598-017-08518-5 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Kim, T.-H., Kwon, E., Kim, I., Lee, S.-A. & Kim, G. Dissolved organic matter in the subterranean estuary of a volcanic island, Jeju: Importance of dissolved organic nitrogen fluxes to the ocean. J. Sea Res. 78, 18–24. https://doi.org/10.1016/j.seares.2012.12.009 (2013).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Milliman, J. D. & Meade, R. H. World-wide delivery of river sediment to the Oceans. J. Geol. 91, 1–21. https://doi.org/10.1086/628741 (1983).

    ADS  Article  Google Scholar 

  • 41.

    Isobe, A. et al. Freshwater and temperature transports through the Tsushima-Korea Straits. J. Geophys. Res. C 107, 2–1 (2002).

    Article  Google Scholar 

  • 42.

    Liu, S. M. et al. Nutrient dynamics from the Changjiang (Yangtze River) estuary to the East China Sea. J. Mar. Syst. 154, 15–27. https://doi.org/10.1016/j.jmarsys.2015.05.010 (2016).

    Article  Google Scholar 

  • 43.

    Hopkinson, C. S., Vallino, J. J. & Nolin, A. Decomposition of dissolved organic matter from the continental margin. Deep Sea Res. Part II 49, 4461–4478. https://doi.org/10.1016/S0967-0645(02)00125-X (2002).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Lee, H., Kim, G., Kim, J., Park, G. & Song, K.-H. Tracing the flow rate and mixing ratio of the Changjiang diluted water in the northwestern Pacific marginal seas using radium isotopes. Geophys. Res. Lett. https://doi.org/10.1002/2014GL060230 (2014).

    Article  Google Scholar 

  • 45.

    McKnight, D. M. et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46, 38–48 (2001).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Bai, Y., Su, R., Han, X., Zhang, C. & Shi, X. Investigation of seasonal variability of CDOM fluorescence in the southern changjiang river estuary by EEM-PARAFAC. Acta Oceanol. Sin. 34, 1–12. https://doi.org/10.1007/s13131-015-0714-8 (2015).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Birdwell, J. E. & Engel, A. S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org. Geochem. 41, 270–280. https://doi.org/10.1016/j.orggeochem.2009.11.002 (2010).

    CAS  Article  Google Scholar 

  • 48.

    Huguet, A. et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 40, 706–719. https://doi.org/10.1016/j.orggeochem.2009.03.002 (2009).

    CAS  Article  Google Scholar 

  • 49.

    Calleja, M. L., Al-Otaibi, N. & Morán, X. A. G. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci. Rep. 9, 4690. https://doi.org/10.1038/s41598-019-40753-w (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Helms, J. R. et al. Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. Mar. Chem. 155, 81–91. https://doi.org/10.1016/j.marchem.2013.05.015 (2013).

    CAS  Article  Google Scholar 

  • 51.

    Chupakova, A. A., Chupakov, A. V., Neverova, N. V., Shirokova, L. S. & Pokrovsky, O. S. Photodegradation of river dissolved organic matter and trace metals in the largest European Arctic estuary. Sci. Total Environ. 622–623, 1343–1352. https://doi.org/10.1016/j.scitotenv.2017.12.030 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 52.

    Miranda, M. L. et al. Impact of UV radiation on DOM transformation on molecular level using FT-ICR-MS and PARAFAC. Spectrochim. Acta Part A 230, 118027. https://doi.org/10.1016/j.saa.2020.118027 (2020).

    CAS  Article  Google Scholar 

  • 53.

    Spencer, R. G. M. et al. Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J. Geophys. Res. https://doi.org/10.1029/2009JG000968 (2009).

    Article  Google Scholar 

  • 54.

    Zhao, W., Lv, L. & Miao, H. Tracing the variability of dissolved organic matter fluorescence in the East China Sea in the red tide season with use of excitation-emission matrix spectroscopy and parallel factor analysis. J. Mar. Sci. 4, 1–6 (2013).

    CAS  Google Scholar 

  • 55.

    Zheng, H. et al. Seasonal variations of dissolved organic matter in the East China Sea using EEM-PARAFAC and implications for carbon and nutrient cycling. Sustainability 10, 1444 (2018).

    Article  Google Scholar 

  • 56.

    Gong, G.-C., Wen, Y.-H., Wang, B.-W. & Liu, G.-J. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Res. Part II 50, 1219–1236. https://doi.org/10.1016/S0967-0645(03)00019-5 (2003).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Malej, A. et al. Changes in particulate and dissolved organic matter in nutrient-enriched enclosures from an area influenced by mucilage: the northern Adriatic Sea. J. Plankton Res. 25, 949–966. https://doi.org/10.1093/plankt/25.8.949 (2003).

    CAS  Article  Google Scholar 

  • 58.

    Hung, C. C. et al. Fluxes of particulate organic carbon in the East China Sea in summer. Biogeosciences 10, 6469–6484. https://doi.org/10.5194/bg-10-6469-2013 (2013).

    ADS  CAS  Article  Google Scholar 

  • 59.

    Chen, B. et al. The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production. Acta Oceanol. Sin. 33, 166–177. https://doi.org/10.1007/s13131-014-0528-0 (2014).

    Article  Google Scholar 

  • 60.

    Kinsey, J. D., Corradino, G., Ziervogel, K., Schnetzer, A. & Osburn, C. L. Formation of chromophoric dissolved organic matter by bacterial degradation of phytoplankton-derived aggregates. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00430 (2018).

    Article  Google Scholar 

  • 61.

    Zepp, R. G., Sheldon, W. M. & Moran, M. A. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Mar. Chem. 89, 15–36. https://doi.org/10.1016/j.marchem.2004.02.006 (2004).

    CAS  Article  Google Scholar 

  • 62.

    Stedmon, C. A. & Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr. 6, 572–579 (2008).

    CAS  Article  Google Scholar 

  • 63.

    Kim, J. & Kim, G. Significant anaerobic production of fluorescent dissolved organic matter in the deep East Sea (Sea of Japan). Geophys. Res. Lett. 43, 7609–7616. https://doi.org/10.1002/2016GL069335 (2016).

    ADS  CAS  Article  Google Scholar 

  • 64.

    Cory, R. M. & McKnight, D. M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 39, 8142–8149 (2005).

    ADS  CAS  Article  Google Scholar 

  • 65.

    Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 36, 742–746. https://doi.org/10.1021/es0155276 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 66.

    Murphy, K. R., Stedmon, C. A., Waite, T. D. & Ruiz, G. M. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 108, 40–58 (2008).

    CAS  Article  Google Scholar 

  • 67.

    Murphy, K. R., Bro, R. & Stedmon, C. A. In Aquatic Organic Matter Fluorescence (eds Coble, P. G. et al.) 339–375 (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  • 68.

    Walker, S. A., Amon, R. M. W. & Stedmon, C. A. Variations in high-latitude riverine fluorescent dissolved organic matter: A comparison of large Arctic rivers. J. Geophys. Res. 118, 1689–1702. https://doi.org/10.1002/2013JG002320 (2013).

    CAS  Article  Google Scholar 

  • 69.

    Catalá, T. S. et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nat. Commun. https://doi.org/10.1038/ncomms6986 (2015).

    Article  PubMed  Google Scholar 

  • 70.

    Dalmagro, H. J. et al. Streams with Riparian Forest buffers versus impoundments differ in discharge and DOM characteristics for pasture catchments in Southern Amazonia. Water 11, 390 (2019).

    CAS  Article  Google Scholar 

  • 71.

    Liu, C. et al. Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging. Environ. Pollut. 246, 207–216. https://doi.org/10.1016/j.envpol.2018.11.092 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 72.

    Dainard, P. G., Guéguen, C., McDonald, N. & Williams, W. J. Photobleaching of fluorescent dissolved organic matter in Beaufort Sea and North Atlantic Subtropical Gyre. Mar. Chem. 177, 630–637. https://doi.org/10.1016/j.marchem.2015.10.004 (2015).

    CAS  Article  Google Scholar 

  • 73.

    Yamashita, Y. et al. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep-Sea Res. Part II 57, 1478–1485. https://doi.org/10.1016/j.dsr2.2010.02.016 (2010).

    ADS  CAS  Article  Google Scholar 

  • 74.

    Peleato, N. M., Sidhu, B. S., Legge, R. L. & Andrews, R. C. Investigation of ozone and peroxone impacts on natural organic matter character and biofiltration performance using fluorescence spectroscopy. Chemosphere 172, 225–233. https://doi.org/10.1016/j.chemosphere.2016.12.118 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Building a more sustainable MIT — from home

    Unraveling ecosystem functioning in intertidal soft sediments: the role of density-driven interactions