in

Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017

  • 1.

    Estrada-Peña, A., De, J. & de la Fuente, J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res.108, 104–128 (2014).

    Article  Google Scholar 

  • 2.

    Vu Hai, V. et al. Monitoring human tick-borne disease risk and tick bite exposure in Europe: Available tools and promising future methods. Ticks Tick. Borne. Dis.5, 607–619 (2014).

    Article  Google Scholar 

  • 3.

    Jaenson, T. G. T., Jaenson, D. G. E., Eisen, L., Petersson, E. & Lindgren, E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit. Vectors5, 8 (2012).

    Article  Google Scholar 

  • 4.

    Skarphédinsson, S., Jensen, P. M. & Kristiansen, K. Survey of tickborne infections in Denmark. Emerg. Infect. Dis.11, 1055–1061 (2005).

    Article  Google Scholar 

  • 5.

    Michelet, L. et al. High-throughput screening of tick-borne pathogens in Europe. Front. Cell. Infect. Microbiol.4, 103 (2014).

    Article  Google Scholar 

  • 6.

    Heyman, P. et al. A clear and present danger: tick-borne diseases in Europe. Expert Rev. Anti. Infect. Ther.8, 33–50 (2010).

    Article  Google Scholar 

  • 7.

    Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors6, 1–11 (2013).

    Article  Google Scholar 

  • 8.

    Jore, S. et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit. Vectors4, 1–11 (2011).

    Article  Google Scholar 

  • 9.

    Kjelland, V. et al. Tick-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from recreational islands in southern Norway. Ticks Tick. Borne. Dis.9, 1098–1102 (2018).

    Article  Google Scholar 

  • 10.

    Rizzoli, A. et al. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front. Public Heal.2, 251 (2014).

    Google Scholar 

  • 11.

    Klitgaard, K., Kjær, L. J., Isbrand, A., Hansen, M. F. & Bødker, R. Multiple infections in questing nymphs and adult female Ixodes ricinus ticks collected in a recreational forest in Denmark. Ticks Tick. Borne. Dis.10, 1060–1065 (2019).

    Article  Google Scholar 

  • 12.

    Pedersen, B. N. et al. Distribution of Neoehrlichia mikurensis in Ixodes ricinus ticks along the coast of Norway: The western seaboard is a low‐prevalence region. Zoonoses Public Health zph. 12662, https://doi.org/10.1111/zph.12662 (2019).

  • 13.

    Jenkins, A. et al. Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. BMC Microbiol.19, 199 (2019).

    Article  Google Scholar 

  • 14.

    Lindgren, E. & Gustafson, R. Tick-borne encephalitis in Sweden and climate change. Lancet (London, England)358, 16–18 (2001).

    CAS  Article  Google Scholar 

  • 15.

    Del Fabbro, S., Gollino, S., Zuliani, M. & Nazzi, F. Investigating the relationship between environmental factors and tick abundance in a small, highly heterogeneous region. J. Vector Ecol.40, 107–116 (2015).

    Article  Google Scholar 

  • 16.

    Nazzi, F. et al. Ticks and Lyme borreliosis in an alpine area in northeast Italy. Med. Vet. Entomol.24, 220–6 (2010).

    CAS  PubMed  Google Scholar 

  • 17.

    Jaenson, T. G. T. et al. Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med. Vet. Entomol.23, 226–237 (2009).

    CAS  Article  Google Scholar 

  • 18.

    Hudson, P. J. et al. Tick-borne encephalitis virus in northern Italy: molecular analysis, relationships with density and seasonal dynamics of Ixodes ricinus. Med. Vet. Entomol.15, 304–313 (2001).

    MathSciNet  CAS  Article  Google Scholar 

  • 19.

    Hubalek, Z., Halouzka, J. & Juricova, Z. Longitudinal surveillance of the tick Ixodes ricinusfor borreliae. Med. Vet. Entomol.17, 46–51 (2003).

    CAS  Article  Google Scholar 

  • 20.

    Mysterud, A. et al. Tick abundance, pathogen prevalence, and disease incidence in two contrasting regions at the northern distribution range of Europe. Parasit. Vectors11, 309 (2018).

    Article  Google Scholar 

  • 21.

    Jensen, P. M. & Hansen, H. Spatial Risk Assessment for Lyme Borreliosis in Denmark. Scand. J. Infect. Dis.32, 545–550 (2000).

    CAS  Article  Google Scholar 

  • 22.

    Moutailler, S. et al. Co-infection of Ticks: The Rule Rather Than the Exception. PLoS Negl. Trop. Dis.10, e0004539 (2016).

    Article  Google Scholar 

  • 23.

    Reye, A. L. et al. Prevalence of Tick-Borne Pathogens in Ixodes ricinus and Dermacentor reticulatus Ticks from Different Geographical Locations in Belarus. PLoS One8, e54476 (2013).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Estrada-Peña, A. Distribution, Abundance, and Habitat Preferences of Ixodes ricinus (Acari: Ixodidae) in Northern Spain. J. Med. Entomol.38, 361–370 (2001).

    Article  Google Scholar 

  • 25.

    Estrada-Pena, A. & De La Fuente, J. Species interactions in occurrence data for a community of tick-transmitted pathogens. Sci. Data3, 2–4 (2016).

    Article  Google Scholar 

  • 26.

    Estrada-Peña, A. et al. An updated meta-analysis of the distribution and prevalence of Borrelia burgdorferi s.l. in ticks in Europe. Int. J. Health Geogr.17, 41 (2018).

    Article  Google Scholar 

  • 27.

    Soleng, A. & Kjelland, V. Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in Ixodes ricinus ticks in Brønnøysund in northern Norway. Ticks Tick. Borne. Dis.4, 218–221 (2013).

    Article  Google Scholar 

  • 28.

    Øines, Ø., Radzijevskaja, J., Paulauskas, A. & Rosef, O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasit. Vectors5, 156 (2012).

    Article  Google Scholar 

  • 29.

    Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L. & Rego, R. O. M. Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Appl. Environ. Microbiol. 83 (2017).

  • 30.

    Hornok, S. et al. Occurrence of ticks and prevalence of Anaplasma phagocytophilum and Borrelia burgdorferi s.l. in three types of urban biotopes: Forests, parks and cemeteries. Ticks Tick. Borne. Dis.5, 785–789 (2014).

    Article  Google Scholar 

  • 31.

    Moutailler, S. et al. Co-infection of Ticks: The Rule Rather Than the Exception. PLoS Negl Trop Dis.10(3), e0004539 (2016).

    Article  Google Scholar 

  • 32.

    Reye, A. L. et al. Pathogen prevalence in questing and feeding ticks. figshare https://plos.figshare.com/articles/_Pathogen_prevalence_in_questing_and_feeding_ticks_/174458 (2013).

  • 33.

    Estrada-Peña, A. & De La Fuente, J. Data from: Species interactions in occurrence data for a community of tick-transmitted pathogens. Dryad https://doi.org/10.5061/dryad.2h3f2 (2016).

  • 34.

    Estrada-Peña, A. et al. Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western palearctic. Appl. Environ. Microbiol.77, 3838–45 (2011).

    Article  Google Scholar 

  • 35.

    Estrada-Peña, A. Data from: The dataset of ticks in South America. Dryad https://doi.org/10.5061/dryad.860473k (2019).

  • 36.

    Kjær, L. J. et al. Predicting and mapping human risk of exposure to Ixodes ricinus nymphs using climatic and environmental data, Denmark, Norway and Sweden, 2016. Eurosurveillance24, 1800101 (2019).

    Article  Google Scholar 

  • 37.

    Kjær, L. J. et al. Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data. Sci. Rep.9, 18144 (2019).

    ADS  Article  Google Scholar 

  • 38.

    Corine Land Cover 2006 raster data. European Environment Agency, https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster (2010).

  • 39.

    Scharlemann, J. P. W. et al. Global Data for Ecology and Epidemiology: A Novel Algorithm for Temporal Fourier Processing MODIS Data. PLoS One3, e1408 (2008).

    ADS  Article  Google Scholar 

  • 40.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, http://www.r-project.org (2018).

  • 41.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version2, 6–7 (2017).

    Google Scholar 

  • 42.

    Gray, J. S. & Lohan, G. The development of a sampling method for the tick Ixodes ricinus and its use in a redwater fever area. Ann. Appl. Biol.101, 421–427 (1982).

    Article  Google Scholar 

  • 43.

    Klitgaard, K., Chriél, M., Isbrand, A., Jensen, T. K. & Bødker, R. Identification of Dermacentor reticulatus Ticks Carrying Rickettsia raoultii on Migrating Jackal, Denmark. Emerg. Infect. Dis.23, 2072–2074 (2017).

    Article  Google Scholar 

  • 44.

    Jaenson, T. G. T. et al. First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden. Parasit. Vectors9, 377 (2016).

    Article  Google Scholar 

  • 45.

    Klitgaard, K. et al. Screening for multiple tick-borne pathogens in Ixodes ricinus ticks from birds in Denmark during spring and autumn migration seasons. Ticks Tick. Borne. Dis.10, 546–552 (2019).

    Article  Google Scholar 

  • 46.

    Cowling, D. W., Gardner, I. A. & Johnson, W. O. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev. Vet. Med.39, 211–25 (1999).

    CAS  Article  Google Scholar 

  • 47.

    Kjær, L. J. et al. A large-scale screening for the taiga tick, Ixodes persulcatus, and the meadow tick, Dermacentor reticulatus, in southern Scandinavia, 2016. Parasit. Vectors12, 338 (2019).

    Article  Google Scholar 

  • 48.

    Kjær, L. J. et al. Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017. figshare https://doi.org/10.6084/m9.figshare.c.4938270 (2020).


  • Source: Ecology - nature.com

    Building a more sustainable MIT — from home

    Unraveling ecosystem functioning in intertidal soft sediments: the role of density-driven interactions