in

Seasonal and environmental variation in volatile emissions of the New Zealand native plant Leptospermum scoparium in weed-invaded and non-invaded sites

  • 1.

    Li, S., Wang, P., Yuan, W., Su, Z. & Bullard, S. H. Endocidal regulation of secondary metabolites in the producing organisms. Sci. Rep. 6, 29315. https://doi.org/10.1038/srep29315 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Dudareva, N., Negre, F., Nagegowda, D. A. & Orlova, I. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25, 417–440. https://doi.org/10.1080/07352680600899973 (2006).

    CAS  Article  Google Scholar 

  • 3.

    Holopainen, J. K. Multiple functions of inducible plant volatiles. Trends Plant Sci. 9, 529–533. https://doi.org/10.1016/j.tplants.2004.09.006 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 4.

    Dudareva, N., Klempien, A., Muhlemann, J. K. & Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16–32. https://doi.org/10.1111/nph.12145 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Effah, E., Holopainen, J. K. & Clavijo McCormick, A. Potential roles of volatile organic compounds in plant competition. Perspect. Plant Ecol. Evol. Syst. 38, 58–63. https://doi.org/10.1016/j.ppees.2019.04.003 (2019).

    Article  Google Scholar 

  • 6.

    Flamini, G., Tebano, M. & Cioni, P. L. Volatiles emission patterns of different plant organs and pollen of Citrus limon. Anal. Chim. Acta 589, 120–124 (2007).

    CAS  Article  Google Scholar 

  • 7.

    Holopainen, J. K. & Gershenzon, J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15, 176–184. https://doi.org/10.1016/j.tplants.2010.01.006 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Bracho-Nunez, A., Welter, S., Staudt, M. & Kesselmeier, J. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation. J. Geophys. Res. Atmos. https://doi.org/10.1029/2010jd015521 (2011).

    Article  Google Scholar 

  • 9.

    Vivaldo, G., Masi, E., Taiti, C., Caldarelli, G. & Mancuso, S. The network of plants volatile organic compounds. Sci. Rep. 7, 1–18 (2017).

    CAS  Article  Google Scholar 

  • 10.

    Himanen, S. J. et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—a mechanism for associational herbivore resistance? New Phytol. 186, 722–732. https://doi.org/10.1111/j.1469-8137.2010.03220.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Camacho-Coronel, X., Molina-Torres, J. & Heil, M. Sequestration of exogenous volatiles by plant cuticular waxes as a mechanism of passive associational resistance: a proof of concept. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00121 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Clavijo McCormick, A. Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecol. Evol. 6, 8569–8582. https://doi.org/10.1002/ece3.2567 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Shiojiri, K. et al. Functions of plant infochemicals in tritrophic interactions between plants, herbivores and carnivorous natural enemies. Jpn. J. Appl. Entomol. Zool. 46, 117–133 (2002).

    CAS  Article  Google Scholar 

  • 14.

    Pichersky, E. & Gershenzon, J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5, 237–243 (2002).

    CAS  Article  Google Scholar 

  • 15.

    Kigathi, R. N., Weisser, W. W., Reichelt, M., Gershenzon, J. & Unsicker, S. B. Plant volatile emission depends on the species composition of the neighboring plant community. BMC Plant Biol. 19, 58. https://doi.org/10.1186/s12870-018-1541-9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Effah, E. et al. Natural variation in volatile emissions of the invasive weed Calluna vulgaris in New Zealand. Plants 9, 283 (2020).

    Article  Google Scholar 

  • 17.

    Inderjit, S. et al. Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology 92, 316–324. https://doi.org/10.1890/10-0400.1 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Broz, A. K. et al. Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol. 10, 115. https://doi.org/10.1186/1471-2229-10-115 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Corbin, J. D. & D’Antonio, C. M. Competition between native perennial and exotic annual grasses: implications for an historical invasion. Ecology 85, 1273–1283. https://doi.org/10.1890/02-0744 (2004).

    Article  Google Scholar 

  • 20.

    Leger, E. A. & Espeland, E. K. Perspective: coevolution between native and invasive plant competitors: implications for invasive species management. Evol. Appl. 3, 169–178. https://doi.org/10.1111/j.1752-4571.2009.00105.x (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Alvarez-Suarez, J. M., Gasparrini, M., Forbes-Hernández, T. Y., Mazzoni, L. & Giampieri, F. The composition and biological activity of honey: a focus on Manuka honey. Foods 3, 420–432 (2014).

    Article  Google Scholar 

  • 22.

    Almasaudi, S. B. et al. Antioxidant, anti-inflammatory, and antiulcer potential of manuka honey against gastric ulcer in rats. Oxid. Med. Cell. Longev. 2016, 3643824 (2016).

    Article  Google Scholar 

  • 23.

    Ronghua, Y., Mark, A. F. & Wilson, J. B. Aspects of the ecology of the indigenous shrub Leptospermum scoparium (Myrtaceae) in New Zealand. N. Z. J. Bot. 22, 483–507. https://doi.org/10.1080/0028825X.1984.10425282 (1984).

    Article  Google Scholar 

  • 24.

    Stephens, J. M. C., Molan, P. C. & Clarkson, B. D. A review of Leptospermum scoparium (Myrtaceae) in New Zealand. N. Z. J. Bot. 43, 431–449. https://doi.org/10.1080/0028825X.2005.9512966 (2005).

    Article  Google Scholar 

  • 25.

    Smale, M. C. Ecology of Dracophyllum subulatum-dominant heathland on frost flats at Rangitaiki and north Pureora, central North Island New Zealand. N. Z. J. Bot. 28, 225–248. https://doi.org/10.1080/0028825X.1990.10412311 (1990).

    Article  Google Scholar 

  • 26.

    Rogers, G. M. North Island seral tussock grasslands 1. Origins and land-use history. N. Z. J. Bot. 32, 271–286. https://doi.org/10.1080/0028825X.1994.10410471 (1994).

    Article  Google Scholar 

  • 27.

    Bagnall, A. Heather at Tongariro. A study of a weed introduction. Tussock Grassl. Mountainlands Inst. Rev. 41, 17–21 (1982).

    Google Scholar 

  • 28.

    Buddenhagen, C. E. Broom Control Monitoring at Tongariro National Park. (Department of Conservation, 2000).

  • 29.

    Perry, N. B. et al. Essential oils from New Zealand manuka and kanuka: chemotaxonomy of Leptospermum. Phytochemistry 44, 1485–1494. https://doi.org/10.1016/S0031-9422(96)00743-1 (1997).

    CAS  Article  Google Scholar 

  • 30.

    Douglas, M. H. et al. Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 65, 1255–1264. https://doi.org/10.1016/j.phytochem.2004.03.019 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K. & Fall, R. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J. Geophys. Res. Atmos. 98, 12609–12617. https://doi.org/10.1029/93jd00527 (1993).

    ADS  Article  Google Scholar 

  • 32.

    Pratt, J. D., Keefover-Ring, K., Liu, L. Y. & Mooney, K. A. Genetically based latitudinal variation in Artemisia californica secondary chemistry. Oikos 123, 953–963. https://doi.org/10.1111/oik.01156 (2014).

    Article  Google Scholar 

  • 33.

    Soler, C. C. L., Proffit, M., Bessière, J.-M., Hossaert-McKey, M. & Schatz, B. Evidence for intersexual chemical mimicry in a dioecious plant. Ecol. Lett. 15, 978–985. https://doi.org/10.1111/j.1461-0248.2012.01818.x (2012).

    Article  PubMed  Google Scholar 

  • 34.

    Anderson, M. J. Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland 26, 32–46 (2005).

  • 35.

    Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley statsref: statistics reference online, 1–15 (2014).

  • 36.

    Copolovici, L. & Niinemets, Ü. In Deciphering Chemical Language of Plant Communication 35–59 (Springer, 2016).

  • 37.

    Valolahti, H., Kivimäenpää, M., Faubert, P., Michelsen, A. & Rinnan, R. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. Glob. Change Biol. 21, 3478–3488. https://doi.org/10.1111/gcb.12953 (2015).

    ADS  Article  Google Scholar 

  • 38.

    Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the Earth system. New Phytol. 183, 27–51. https://doi.org/10.1111/j.1469-8137.2009.02859.x (2009).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Loreto, F. & Schnitzler, J.-P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15, 154–166. https://doi.org/10.1016/j.tplants.2009.12.006 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Possell, M. & Loreto, F. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions 209–235 (Springer, Berlin, 2013).

  • 41.

    Peñuelas, J. & Staudt, M. BVOCs and global change. Trends Plant Sci. 15, 133–144. https://doi.org/10.1016/j.tplants.2009.12.005 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Pare, P. W. & De Tumlinson, J. H. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114, 1161. https://doi.org/10.1104/pp.114.4.1161 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Holopainen, J. & Blande, J. Where do herbivore-induced plant volatiles go?. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00185 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Niinemets, Ü, Kännaste, A. & Copolovici, L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00262 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Litt, A. R., Cord, E. E., Fulbright, T. E. & Schuster, G. L. Effects of invasive plants on arthropods. Conserv. Biol. 28, 1532–1549. https://doi.org/10.1111/cobi.12350 (2014).

    Article  PubMed  Google Scholar 

  • 46.

    Dicke, M. & Baldwin, I. T. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15, 167–175. https://doi.org/10.1016/j.tplants.2009.12.002 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Clavijo McCormick, A., Unsicker, S. B. & Gershenzon, J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 17, 303–310. https://doi.org/10.1016/j.tplants.2012.03.012 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Turlings, T. C. J. & Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63, 433–452. https://doi.org/10.1146/annurev-ento-020117-043507 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L., Bassetti, P. & Dorn, S. Herbivore-induced emissions of maise volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol. Exp. Appl. 87, 133–142. https://doi.org/10.1046/j.1570-7458.1998.00315.x (1998).

    CAS  Article  Google Scholar 

  • 50.

    De Moraes, C. M., Mescher, M. C. & Tumlinson, J. H. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410, 577–580. https://doi.org/10.1038/35069058 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 51.

    Clavijo McCormick, A. et al. Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. Plant Cell Environ. 37, 1909–1923. https://doi.org/10.1111/pce.12287 (2014).

    Article  PubMed  Google Scholar 

  • 52.

    Irmisch, S. et al. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant J. 80, 1095–1107. https://doi.org/10.1111/tpj.12711 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Ehrenfeld, J. G. Effects of exotic plant invasions on soil Nutrient cycling processes. Ecosystems 6, 503–523. https://doi.org/10.1007/s10021-002-0151-3 (2003).

    CAS  Article  Google Scholar 

  • 54.

    Vallés, S. M., Fernández, J. B. G., Dellafiore, C. & Cambrollé, J. Effects on soil, microclimate and vegetation of the native-invasive Retama monosperma (L.) in coastal dunes. Plant Ecol. 212, 169–179. https://doi.org/10.1007/s11258-010-9812-z (2011).

    Article  Google Scholar 

  • 55.

    Rogers, G. M. Demography, and post-control response of heather in the central north island. Sci. Conserv. 9, 20 (1995).

    Google Scholar 

  • 56.

    Fogarty, G. & Facelli, J. M. Growth and competition of Cytisus scoparius, an invasive shrub, and Australian native shrubs. Plant Ecol. 144, 27–35. https://doi.org/10.1023/A:1009808116068 (1999).

    Article  Google Scholar 

  • 57.

    Haubensak, K. A. & Parker, I. M. Soil changes accompanying invasion of the exotic shrub Cytisus scoparius in glacial outwash prairies of western Washington [USA]. Plant Ecol. 175, 71–79. https://doi.org/10.1023/B:VEGE.0000048088.32708.58 (2004).

    Article  Google Scholar 

  • 58.

    Caldwell, B. A. Effects of invasive scotch broom on soil properties in a Pacific coastal prairie soil. Appl. Soil. Ecol. 32, 149–152. https://doi.org/10.1016/j.apsoil.2004.11.008 (2006).

    Article  Google Scholar 

  • 59.

    Chen, Y., Schmelz, E. A., Wäckers, F. & Ruberson, J. R. Cotton plant, Gossypium hirsutum L., defense in response to nitrogen fertilization. J. Chem. Ecol. 34, 1553–1564. https://doi.org/10.1007/s10886-008-9560-x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    Peñuelas, J. & Llusià, J. Influence of intra- and inter-specific Interference on terpene emission by Pinus Halepensis and Quercus Ilex seedlings. Biol. Plant. 41, 139–143. https://doi.org/10.1023/A:1001789222741 (1998).

    Article  Google Scholar 

  • 61.

    Ormeño, E., Fernandez, C. & Mévy, J. P. Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68, 840–852. https://doi.org/10.1016/j.phytochem.2006.11.033 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 62.

    Kigathi, R. N., Weisser, W. W., Veit, D., Gershenzon, J. & Unsicker, S. B. Plants suppress their emission of volatiles when growing with conspecifics. J. Chem. Ecol. 39, 537–545. https://doi.org/10.1007/s10886-013-0275-2 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 63.

    Ishizaki, S., Shiojiri, K., Karban, R. & Ohara, M. Effect of genetic relatedness on volatile communication of sagebrush (Artemisia tridentata). J. Plant Interact. 6, 193–193 (2011).

    CAS  Article  Google Scholar 

  • 64.

    Wason, E. L. & Hunter, M. D. Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field. Oecologia 174, 479–491 (2014).

    ADS  Article  Google Scholar 

  • 65.

    Karban, R. & Shiojiri, K. Self-recognition affects plant communication and defense. Ecol. Lett. 12, 502–506 (2009).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Building a more sustainable MIT — from home

    Unraveling ecosystem functioning in intertidal soft sediments: the role of density-driven interactions