in

Microbial diversity drives carbon use efficiency in a model soil

  • 1.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Garcia, F. C., Bestion, E., Warfield, R. & Yvon-Durocher, G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 115, 10989–10994 (2018).

    PubMed  Google Scholar 

  • 3.

    IPCC. Intergovernmental panel on climate change 2013 the physical science basis: working group I. Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).

  • 4.

    Millennium Ecosystem Assessment. Ecosystems and Human Well-being: A Framework For Assessment (Island Press, Washington, DC, 2005).

  • 5.

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–686 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Li, J. et al. Reduced carbon use efficiency and increased microbial turnover with soil warming. Glob. Change Biol. 25, 900–910 (2018).

    ADS  Google Scholar 

  • 8.

    Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–60 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Chen, S. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl Acad. Sci. USA 115, 4027–4032 (2018).

    CAS  PubMed  Google Scholar 

  • 10.

    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).

    ADS  CAS  Google Scholar 

  • 12.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    ADS  CAS  Google Scholar 

  • 13.

    Li, J., Wang, G., Allison, S. D., Mayes, M. A. & Luo, Y. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry 119, 67–84 (2014).

    Google Scholar 

  • 14.

    Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909 (2013).

    ADS  CAS  Google Scholar 

  • 15.

    Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196, 79–91 (2012).

    CAS  PubMed  Google Scholar 

  • 16.

    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–9 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Qiao, Y. et al. Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply. Sci. Rep. 9, 1–8 (2019).

    Google Scholar 

  • 19.

    Herron, P. M., Stark, J. M., Holt, C., Hooker, T. & Cardon, Z. G. Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biol. Biochem. 41, 1262–1269 (2009).

    CAS  Google Scholar 

  • 20.

    Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3, 395 (2013).

    ADS  CAS  Google Scholar 

  • 21.

    Bölscher, T., Ågren, G. I. & Herrmann, A. M. Land-use alters the temperature response of microbial carbon-use efficiency in soils- a consumption-based approach. Soil Biol. Biochem. 140, 107639 (2020).

    Google Scholar 

  • 22.

    Pold, G., et al., Carbon use efficiency and its temperature sensitivity covary in soil bacteria. mBIO 11, e02293-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Tiemann, L. K. & Billings, S. A. Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol. Biochem. 43, 1837–1847 (2011).

    CAS  Google Scholar 

  • 24.

    Harris, R., Parr, J., Gardner, W. & Elliott, L. Effect of Water Potential on Microbial Growth and Activity in Water Potential Relations in Soil Microbiology (Soil Science Society of America, 1981).

  • 25.

    Stark, J. M. & Firestone, M. K. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl. Environ. Microbiol. 61, 218–221 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).

    PubMed  Google Scholar 

  • 27.

    Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Domeignoz-Horta, L. A. et al. The diversity of the n 2o reducers matters for the N2O:N2 denitrification end-product ratio across an annual and perennial cropping system. Front. Microbiol. 6, 971 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Domeignoz-Horta, L. A. et al. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils. Glob. Change Biol. 24, 360–370 (2017).

    ADS  Google Scholar 

  • 30.

    Ho, A. et al. The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J. 8, 1945–1948 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Levine, U. Y., Teal, T. K., Robertson, G. P. & Schmidt, T. M. Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J. 5, 1683–1691 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur. J. Soil Sci. 62, 105–116 (2011).

    CAS  Google Scholar 

  • 33.

    Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 1–11 (2012).

    Google Scholar 

  • 34.

    Delgado-Baquerizo, M. et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J. Ecol. 104, 936–946 (2016).

    Google Scholar 

  • 35.

    Liebich, J., Schloter, M., Schäffer, A., Vereecken, H. & Burauel, P. Degradation and humification of maize straw in soil microcosms inoculated with simple and complex microbial communities. Eur. J. Soil Sci. 58, 141–151 (2007).

    Google Scholar 

  • 36.

    Glassman, S. I. et al. Decomposition responses to climate depend on microbial community composition. Proc. Natl Acad. Sci. USA 115, 11994–11999 (2018).

    CAS  PubMed  Google Scholar 

  • 37.

    Sandra, D., Symstad, A. J., Chapin, F. S., Wardle, D. A. & Huenneke, L. F. Functional diversity revealed by removal experiments. Trends Ecol. Evol. 18, 140–146 (2003).

    Google Scholar 

  • 38.

    Hayakawa, M., Yoshida, Y. & Iimura, Y. Selective isolation of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. J. Appl. Microbiol. 96, 973–981 (2004).

    CAS  PubMed  Google Scholar 

  • 39.

    Spohn, M. et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 97, 168–175 (2016).

    CAS  Google Scholar 

  • 40.

    Malik, A. A., Puissant, J., Goodall, T., Allison, S. D. & Griffiths, R. I. Soil microbial communities with greater investment in resource acquisition have lower growth yield. Soil Biol. Biochem. 132, 36–39 (2019).

    CAS  Google Scholar 

  • 41.

    Soares, M. & Rousk, J. Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biol. Biochem. 131, 195–205 (2019).

    CAS  Google Scholar 

  • 42.

    Yang, X., Richmond, M. C., Scheibe, T. D., Perkins, W. A. & Resat, H. Flow partitioning in fully saturated soil aggregates. Transp. Porous Media 103, 295–314 (2014).

    Google Scholar 

  • 43.

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 44.

    Griffiths, B. S. et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90, 279–294 (2000).

    Google Scholar 

  • 45.

    Wertz, S. et al. Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8, 2162–2169 (2006).

    CAS  PubMed  Google Scholar 

  • 46.

    Griffiths, B. S. et al. An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biol. Biochem. 33, 1713–1722 (2001).

    CAS  Google Scholar 

  • 47.

    Zheng, Q. et al. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biol. Biochem. 128, 45–55 (2019).

    CAS  PubMed  Google Scholar 

  • 48.

    Loreau, M. Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos 91, 3–17 (2000).

    Google Scholar 

  • 49.

    de Vries, F. T., et al., Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9 (2018).

  • 50.

    Tecon, R., Ebrahimi, A., Kleyer, H., Levi, S. E. & Or, D. Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc. Natl Acad. Sci. USA 115, 9791–9796 (2018).

    CAS  PubMed  Google Scholar 

  • 51.

    Waschina, S., D’Souza, G., Kost, C. & Kaleta, C. Metabolic network architecture and carbon source determine metabolite production costs. FEBS J. 283, 2149–2163 (2016).

    CAS  PubMed  Google Scholar 

  • 52.

    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Kieft, T. L., soroker, E. & firestone, M. K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol. Biochem. 19, 119 – 126 (1987).

    Google Scholar 

  • 55.

    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–9 (2013).

    PubMed  Google Scholar 

  • 56.

    Rousk, J., Demoling, L. A., Bahr, A. & Bååth, E. Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol. Ecol. 63, 350–358 (2008).

    CAS  PubMed  Google Scholar 

  • 57.

    Haghverdi, A., Öztürk, H. S. & Durner, W. Measurement and estimation of the soil water retention curve using the evaporation method and the pseudo continuous pedotransfer function. J. Hydrol. 563, 251–259 (2018).

    ADS  Google Scholar 

  • 58.

    Setia, R., Verma, S. L. & Marschner, P. Measuring microbial biomass carbon by direct extraction – comparison with chloroform fumigation-extraction. Eur. J. Soil Biol. 53, 103–106 (2012).

    CAS  Google Scholar 

  • 59.

    Bartlett, R. J. & Ross, D. S. Colorimetric determination of oxidizable carbon in acid soil solutions. Soil Sci. Soc. Am. J. 22, 1191 (1988).

    Google Scholar 

  • 60.

    Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s rrna. Appl. Environ. Microbiol. 59, 695–700 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Fierer, N., Jackson, J. A., Vilgalys, R. & Jackson, R. B. Assessment of soil microbial community structure by use of taxon-specific quantitative pcr assays. Appl. Environ. Microbiol. 71, 4117–4120 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Lofgren, L. A. et al. Genome-based estimates of fungal rdna copy number variation across phylogenetic scales and ecological lifestyles. Mol. Ecol. 28, 721–730 (2019).

    PubMed  Google Scholar 

  • 63.

    Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. & Schmidt, T. M. rrnDB: Improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).

    CAS  PubMed  Google Scholar 

  • 64.

    Pold, G., Grandy, A. S., Melillo, J. M. & DeAngelis, K. M. Changes in substrate availability drive carbon cycle response to chronic warming. Soil Biol. Biochem. 110, 68–78 (2017).

    CAS  Google Scholar 

  • 65.

    Six, J., Elliott, E. T., Paustian, K. & Doran, J. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62, 1367–1377 (1998).

    ADS  CAS  Google Scholar 

  • 66.

    Marquez, C. O., Garcia, V. J., Cambardella, C. A., Schultz, R. C. & Isenhart, T. M. Aggregate-size stability distribution and soil stability. Soil Sci. Soc. Am. J. 68, 725–735 (2004).

    ADS  CAS  Google Scholar 

  • 67.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Oksanen, J., et al. Vegan: Community Ecology Package. R package version 2.5-6 (2019).

  • 70.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16s rrna gene database and workbench compatible with arb. Appl Environ. Microbiol. 72, 5069–5072 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Kõljalg, U. et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166, 1063–1068 (2005).

    PubMed  Google Scholar 

  • 72.

    Mendiburu, F. D. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-2 (2019).

  • 73.

    Muggeo, V. M. Segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).

    Google Scholar 

  • 74.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & NLME. Linear and Nonlinear Mixed Effects Models. R package version 3.1-147 (2019).

  • 75.

    Lefcheck, J. S. Piecewisesem: piecewise structural equation modeling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Google Scholar 

  • 76.

    Shipley, B. A new inferential test for path models based on directed acyclic graphs. Struct. Equ. Model. Multidiscip. J. 7, 206–218 (2000).

    Google Scholar 

  • 77.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New York, 2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Engineering superpowered organisms for a more sustainable world

    Letter from President Reif: Tackling the grand challenges of climate change