in

Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems

  • 1.

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature464, 1334–1337 (2010).

    Google Scholar 

  • 2.

    Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Plan. Change77.1, 85–96 (2011).

    Google Scholar 

  • 3.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

  • 4.

    Zhang, X. et al. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Clim. Change3, 47–51 (2013).

    Google Scholar 

  • 5.

    Kattsov, V. M. et al. Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. J. Hydrometeor.8, 571–589 (2007).

    Google Scholar 

  • 6.

    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change7, 263–267 (2017).

    Google Scholar 

  • 7.

    Vihma, T. Effects of Arctic sea ice decline on weather and climate: a review. Surv. Geophys.35, 1175–1214 (2014).

    Google Scholar 

  • 8.

    van der Kolk, H. J. et al. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosci13, 6229 (2016).

    Google Scholar 

  • 9.

    Fujinami, H., Yasunari, T. & Watanabe, T. Trend and interannual variation in summer precipitation in eastern Siberia in recent decades. Int. J. Climatol.36, 355–368 (2016).

    Google Scholar 

  • 10.

    Kopec, B. G., Feng, X., Michel, F. A. & Posmentier, E. S. Influence of sea ice on Arctic precipitation. Proc. Nat. Acad. Sci. USA113, 46–51 (2016).

    Google Scholar 

  • 11.

    Bintanja, R. & Selten, F. M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature509, 479–482 (2014).

    Google Scholar 

  • 12.

    Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Env. Res. Lett.11, 084001 (2016).

    Google Scholar 

  • 13.

    Koenigk, T. et al. Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim. Dyn. 111–12, 2719–2743 (2013).

    Google Scholar 

  • 14.

    Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 13298, 2171–2173 (2002).

    Google Scholar 

  • 15.

    Euskirchen, E. S. et al. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high‐latitude ecosystems. Glob. Change Biol.12, 731–750 (2006).

    Google Scholar 

  • 16.

    Neumann, R. B. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys. Res. Lett.46, 1393–1401 (2019).

    Google Scholar 

  • 17.

    Vincent, W. F., Lemay, M. & Allard, M. Arctic permafrost landscapes in transition: towards an integrated Earth system approach. Arct. Sci.3, 39–64 (2017).

    Google Scholar 

  • 18.

    Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett.31, 18 (2014).

    Google Scholar 

  • 19.

    Åkerman, H. J. & Johansson, M. Thawing permafrost and thicker active layers in sub‐arctic Sweden. Permafr. Periglac. Proc.19, 279–292 (2008).

    Google Scholar 

  • 20.

    Iijima, Y. et al. Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia. Permafr. Periglac. Proc.21, 30–41 (2010).

    Google Scholar 

  • 21.

    Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett.33, 2 (2006).

    Google Scholar 

  • 22.

    Kokfelt, U. et al. Ecosystem responses to increased precipitation and permafrost decay in subarctic Sweden inferred from peat and lake sediments. Glob. Change Biol.15, 1652–1663 (2009).

    Google Scholar 

  • 23.

    Loranty, M. M. et al. Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosci.15, 5287–5313 (2018).

    Google Scholar 

  • 24.

    Shiklomanov, N. I., Streletskiy, D. A., Little, J. D. & Nelson, F. E. Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophys. Res. Lett.40, 6356–6361 (2013).

    Google Scholar 

  • 25.

    Shur, Y. L. & Jorgenson, M. T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Proc.18, 7–19 (2007).

    Google Scholar 

  • 26.

    Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. Res.40, 1219–1236 (2010).

    Google Scholar 

  • 27.

    Chapin, F. S. III, Van Cleve, K. & Chapin, M. C. Soil temperature and nutrient cycling in the tussock growth form of Eriophorum vaginatum. J. Ecol. Mar.1, 169–189 (1979).

    Google Scholar 

  • 28.

    Fisher, J. P. et al. The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest. Glob. Change Biol.22, 3127–3140 (2016).

    Google Scholar 

  • 29.

    Brown, D. et al. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests. J. Geophys. Res. Biogeosci.120, 1619–1637 (2015).

    Google Scholar 

  • 30.

    Jafarov, E. E., Romanovsky, V. E., Genet, H., McGuire, A. D. & Marchenko, S. S. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environ. Res. Lett.8, 035030 (2013).

    Google Scholar 

  • 31.

    Vogelmann, J. E. et al. Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogram. Engin. Rem. Sens.67, 6 (2001).

    Google Scholar 

  • 32.

    Van Tatenhove, F. G. & Olesen, O. B. Ground temperature and related permafrost characteristics in West Greenland. Permafr. Periglac. Proc.5, 199–215 (1994).

    Google Scholar 

  • 33.

    Hinkel, K. M., Paetzold, F., Nelson, F. E. & Bockheim, J. G. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Glob. Planet. Change29, 293–309 (2001).

    Google Scholar 

  • 34.

    Harris, S. A. Causes and consequences of rapid thermokarst development in permafrost or glacial terrain. Permafr. Periglac. Proc.13, 237–242 (2002).

    Google Scholar 

  • 35.

    Ling, F. & Zhang, T. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Reg. Sci. Technol.38, 1–5 (2004).

    Google Scholar 

  • 36.

    Price, A. G., Dunham, K., Carleton, T. & Band, L. Variability of water fluxes through the black spruce (Picea mariana) canopy and feather moss (Pleurozium schreberi) carpet in the boreal forest of Northern Manitoba. J. Hydrol.196, 310–323 (1997).

    Google Scholar 

  • 37.

    Hamada, S. et al. Hydrometeorological behaviour of pine and larch forests in eastern Siberia. Hydrol. Proc.18, 23–39 (2004).

    Google Scholar 

  • 38.

    Goetz, J. D. & Price, J. S. Role of morphological structure and layering of Sphagnum and Tomenthypnum mosses on moss productivity and evaporation rates. Can. J. Soil Sci.95, 109–124 (2015).

    Google Scholar 

  • 39.

    Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci.9, 312 (2016).

    Google Scholar 

  • 40.

    Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Comm.9, 3041 (2018).

    Google Scholar 

  • 41.

    Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Comm.10, 1329 (2019).

    Google Scholar 

  • 42.

    Johnstone, J. F. et al. Fire, climate change, and forest resilience in interior Alaska. Can. J. Res.40, 1302–1312 (2010).

    Google Scholar 

  • 43.

    Juszak, I., Eugster, W., Heijmans, M. M. & Schaepman-Strub, G. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosci.13, 404940–404964 (2016).

    Google Scholar 

  • 44.

    Shur, Y., Hinkel, K. M. & Nelson, F. E. The transient layer: implications for geocryology and climate‐change science. Permafr. Periglac. Proc.16, 5–17 (2005).

    Google Scholar 

  • 45.

    Barker, A. J. et al. Late season mobilization of trace metals in two small Alaskan arctic watersheds as a proxy for landscape scale permafrost active layer dynamics. Chem. Geo.381, 180–193 (2014).

    Google Scholar 

  • 46.

    Khosh, M. S. et al. Seasonality of dissolved nitrogen from spring melt to fall freezeup in Alaskan Arctic tundra and mountain streams. J. Geophys. Res. Biogeosci.122, 1718–1737 (2017).

    Google Scholar 

  • 47.

    Loiko, S. V. et al. Abrupt permafrost collapse enhances organic carbon, CO2, nutrient and metal release into surface waters. Chem. Geo.471, 153–165 (2017).

    Google Scholar 

  • 48.

    Jorgenson, M. T., Racine, C. H., Walters, J. C. & Osterkamp, T. E. Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim. Change48, 551–579 (2001).

    Google Scholar 

  • 49.

    Douglas, T., Jones, M. C., Hiemstra, C. A. & Arnold, J. R. Sources and sinks of carbon in boreal ecosystems of interior Alaska: A review. Elem. Sci. Anth.12, 2 (2014).

    Google Scholar 

  • 50.

    Douglas, T. A. et al. Degrading permafrost mapped with electrical resistivity tomography, airborne imagery and LiDAR, and seasonal thaw measurements. Geophys81, WA71-WA85 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Letter from President Reif: Tackling the grand challenges of climate change

    Novel gas-capture approach advances nuclear fuel management