Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature464, 1334–1337 (2010).
Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Plan. Change77.1, 85–96 (2011).
Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).
Zhang, X. et al. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Clim. Change3, 47–51 (2013).
Kattsov, V. M. et al. Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. J. Hydrometeor.8, 571–589 (2007).
Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change7, 263–267 (2017).
Vihma, T. Effects of Arctic sea ice decline on weather and climate: a review. Surv. Geophys.35, 1175–1214 (2014).
van der Kolk, H. J. et al. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosci13, 6229 (2016).
Fujinami, H., Yasunari, T. & Watanabe, T. Trend and interannual variation in summer precipitation in eastern Siberia in recent decades. Int. J. Climatol.36, 355–368 (2016).
Kopec, B. G., Feng, X., Michel, F. A. & Posmentier, E. S. Influence of sea ice on Arctic precipitation. Proc. Nat. Acad. Sci. USA113, 46–51 (2016).
Bintanja, R. & Selten, F. M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature509, 479–482 (2014).
Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Env. Res. Lett.11, 084001 (2016).
Koenigk, T. et al. Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim. Dyn. 111–12, 2719–2743 (2013).
Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 13298, 2171–2173 (2002).
Euskirchen, E. S. et al. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high‐latitude ecosystems. Glob. Change Biol.12, 731–750 (2006).
Neumann, R. B. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys. Res. Lett.46, 1393–1401 (2019).
Vincent, W. F., Lemay, M. & Allard, M. Arctic permafrost landscapes in transition: towards an integrated Earth system approach. Arct. Sci.3, 39–64 (2017).
Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett.31, 18 (2014).
Åkerman, H. J. & Johansson, M. Thawing permafrost and thicker active layers in sub‐arctic Sweden. Permafr. Periglac. Proc.19, 279–292 (2008).
Iijima, Y. et al. Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia. Permafr. Periglac. Proc.21, 30–41 (2010).
Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett.33, 2 (2006).
Kokfelt, U. et al. Ecosystem responses to increased precipitation and permafrost decay in subarctic Sweden inferred from peat and lake sediments. Glob. Change Biol.15, 1652–1663 (2009).
Loranty, M. M. et al. Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosci.15, 5287–5313 (2018).
Shiklomanov, N. I., Streletskiy, D. A., Little, J. D. & Nelson, F. E. Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophys. Res. Lett.40, 6356–6361 (2013).
Shur, Y. L. & Jorgenson, M. T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Proc.18, 7–19 (2007).
Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. Res.40, 1219–1236 (2010).
Chapin, F. S. III, Van Cleve, K. & Chapin, M. C. Soil temperature and nutrient cycling in the tussock growth form of Eriophorum vaginatum. J. Ecol. Mar.1, 169–189 (1979).
Fisher, J. P. et al. The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest. Glob. Change Biol.22, 3127–3140 (2016).
Brown, D. et al. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests. J. Geophys. Res. Biogeosci.120, 1619–1637 (2015).
Jafarov, E. E., Romanovsky, V. E., Genet, H., McGuire, A. D. & Marchenko, S. S. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environ. Res. Lett.8, 035030 (2013).
Vogelmann, J. E. et al. Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogram. Engin. Rem. Sens.67, 6 (2001).
Van Tatenhove, F. G. & Olesen, O. B. Ground temperature and related permafrost characteristics in West Greenland. Permafr. Periglac. Proc.5, 199–215 (1994).
Hinkel, K. M., Paetzold, F., Nelson, F. E. & Bockheim, J. G. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Glob. Planet. Change29, 293–309 (2001).
Harris, S. A. Causes and consequences of rapid thermokarst development in permafrost or glacial terrain. Permafr. Periglac. Proc.13, 237–242 (2002).
Ling, F. & Zhang, T. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Reg. Sci. Technol.38, 1–5 (2004).
Price, A. G., Dunham, K., Carleton, T. & Band, L. Variability of water fluxes through the black spruce (Picea mariana) canopy and feather moss (Pleurozium schreberi) carpet in the boreal forest of Northern Manitoba. J. Hydrol.196, 310–323 (1997).
Hamada, S. et al. Hydrometeorological behaviour of pine and larch forests in eastern Siberia. Hydrol. Proc.18, 23–39 (2004).
Goetz, J. D. & Price, J. S. Role of morphological structure and layering of Sphagnum and Tomenthypnum mosses on moss productivity and evaporation rates. Can. J. Soil Sci.95, 109–124 (2015).
Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci.9, 312 (2016).
Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Comm.9, 3041 (2018).
Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Comm.10, 1329 (2019).
Johnstone, J. F. et al. Fire, climate change, and forest resilience in interior Alaska. Can. J. Res.40, 1302–1312 (2010).
Juszak, I., Eugster, W., Heijmans, M. M. & Schaepman-Strub, G. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosci.13, 404940–404964 (2016).
Shur, Y., Hinkel, K. M. & Nelson, F. E. The transient layer: implications for geocryology and climate‐change science. Permafr. Periglac. Proc.16, 5–17 (2005).
Barker, A. J. et al. Late season mobilization of trace metals in two small Alaskan arctic watersheds as a proxy for landscape scale permafrost active layer dynamics. Chem. Geo.381, 180–193 (2014).
Khosh, M. S. et al. Seasonality of dissolved nitrogen from spring melt to fall freezeup in Alaskan Arctic tundra and mountain streams. J. Geophys. Res. Biogeosci.122, 1718–1737 (2017).
Loiko, S. V. et al. Abrupt permafrost collapse enhances organic carbon, CO2, nutrient and metal release into surface waters. Chem. Geo.471, 153–165 (2017).
Jorgenson, M. T., Racine, C. H., Walters, J. C. & Osterkamp, T. E. Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim. Change48, 551–579 (2001).
Douglas, T., Jones, M. C., Hiemstra, C. A. & Arnold, J. R. Sources and sinks of carbon in boreal ecosystems of interior Alaska: A review. Elem. Sci. Anth.12, 2 (2014).
Douglas, T. A. et al. Degrading permafrost mapped with electrical resistivity tomography, airborne imagery and LiDAR, and seasonal thaw measurements. Geophys81, WA71-WA85 (2015).
Source: Ecology - nature.com