in

Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system

  • 1.

    Hubbell SP. The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press; 2001.

    Google Scholar 

  • 2.

    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.

    CAS  PubMed  Google Scholar 

  • 3.

    Vellend M. The theory of ecological communities. 1st ed. Woodstock, UK: Princeton University Press; 2016.

    Google Scholar 

  • 4.

    McGill BJ. Towards a unification of unified theories of biodiversity. Ecol Lett. 2010;13:627–42.

    PubMed  Google Scholar 

  • 5.

    Gilbert B. Joint consequences of dispersal and niche overlap on local diversity and resource use. J Ecol. 2012;100:287–96.

    Google Scholar 

  • 6.

    Chase JM, Leibold MA. Ecological niches: linking classical and contemporary approaches. Biodivers Conserv. 2004;13:1791–3.

    Google Scholar 

  • 7.

    Rosindell J, Hubbell SP, Etienne RS. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol. 2011;26:340–8.

    PubMed  Google Scholar 

  • 8.

    Bell G. Neutral macroecology. Science 2001;293:2413–8.

    CAS  PubMed  Google Scholar 

  • 9.

    Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett. 2004;7:601–13.

    Google Scholar 

  • 10.

    Wilson DS. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology. 1992;73:1984–2000.

    Google Scholar 

  • 11.

    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.

    PubMed  Google Scholar 

  • 12.

    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.

    PubMed  PubMed Central  Google Scholar 

  • 13.

    MacArthur RH, Wilson EO. The theory of island biogeography. Woodstock, UK: Princeton University Press; 2001.

    Google Scholar 

  • 14.

    Dini-Andreote F, Stegen JC, Van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA. 2015;112:E1326–E1332.

    CAS  PubMed  Google Scholar 

  • 15.

    Lowe WH, McPeek MA. Is dispersal neutral? Trends Ecol Evol. 2014;29:444–50.

    PubMed  Google Scholar 

  • 16.

    Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos. 2014;123:1420–30.

    Google Scholar 

  • 17.

    Rundle HD, Nosil P. Ecological speciation. Ecol Lett. 2005;8:336–52.

    Google Scholar 

  • 18.

    Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 2016;7:214. https://doi.org/10.3389/fmicb.2016.00214.

    Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Lindström ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. 2012;4:1–9.

    PubMed  Google Scholar 

  • 20.

    Isabwe A, Ren K, Wang Y, Peng F, Chen H. Community assembly mechanisms underlying the core and random bacterioplankton and microeukaryotes in a river–reservoir system. Water. 2019;11:1–17.

    Google Scholar 

  • 21.

    Fodelianakis S, Lorz A, Valenzuela-Cuevas A, Barozzi A, Booth JM, Daffonchio D. Dispersal homogenizes communities via immigration even at low rates in a simplified synthetic bacterial metacommunity. Nat Commun. 2019;10:1. https://doi.org/10.1038/s41467-019-09306-7.

    CAS  Article  Google Scholar 

  • 22.

    Jiao S, Yang Y, Xu Y, Zhang J, Lu Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 2020;14:202–16.

    PubMed  Google Scholar 

  • 23.

    Grosberg RK, Vermeij GJ, Wainwright PC. Biodiversity in water and on land. Curr Biol. 2012;22:R900–R903.

    CAS  PubMed  Google Scholar 

  • 24.

    Wang J, Shen J, Wu Y, Tu C, Soininen J, Stegen JC, et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 2013;7:1310–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE. 2011;6:e24570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Barberán A, Casamayor EO. Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquat Micro Ecol. 2010;59:1–10.

    Google Scholar 

  • 27.

    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Ruiz-González C, Niño-García JP, del Giorgio PA. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol Lett. 2015;18:1198–206.

    PubMed  Google Scholar 

  • 29.

    Widder S, Besemer K, Singer GA, Ceola S, Bertuzzo E, Quince C, et al. Fluvial network organization imprints on microbial co-occurrence networks. Proc Natl Acad Sci USA. 2014;111:12799–804.

    CAS  PubMed  Google Scholar 

  • 30.

    Comte J, Lovejoy C, Crevecoeur S, Vincent WF. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes. Biogeosciences. 2016;13:175–90.

    CAS  Google Scholar 

  • 31.

    Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshw Biol 2015;60:845–69.

    Google Scholar 

  • 32.

    Logares R, Deutschmann IM, Giner CR, Krabberød AK. Different processes shape prokaryotic and picoeukaryotic assemblages in the sunlit ocean microbiome. Environ Microbiol. 2018;20:37–49.

    Google Scholar 

  • 33.

    Östman Ö, Drakare S, Kritzberg ES, Langenheder S, Logue JB, Lindström ES. Importance of space and the local environment for linking local and regional abundances of microbes. Aquat Micro Ecol. 2012;67:35–45.

    Google Scholar 

  • 34.

    Niño-García JP, Ruiz-González C, del Giorgio PA. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J. 2016;1:1–12.

    Google Scholar 

  • 35.

    Ofiţeru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, et al. Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci USA. 2010;107:15345–50.

    PubMed  Google Scholar 

  • 36.

    Evans S, Martiny JBH, Allison SD. Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 2017;11:176–85.

    PubMed  Google Scholar 

  • 37.

    Declerck SAJ, Winter C, Shurin JB, Suttle CA, Matthews B. Effects of patch connectivity and heterogeneity on metacommunity structure of planktonic bacteria and viruses. ISME J. 2013;7:533–42.

    PubMed  Google Scholar 

  • 38.

    Fernandes IM, Henriques-Silva R, Penha J, Zuanon J, Peres-Neto PR. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography. 2014;37:464–75.

    Google Scholar 

  • 39.

    José de Paggi SB, Paggi JC. Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain. Int Rev Hydrobiol. 2008;93:659–78.

    Google Scholar 

  • 40.

    Devercelli M, Scarabotti P, Mayora G, Schneider B, Giri F. Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain. Hydrobiologia. 2016;764:139–56.

    CAS  Google Scholar 

  • 41.

    Devercelli M. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná river (Argentina). Hydrobiologia. 2010;639:5–19.

    CAS  Google Scholar 

  • 42.

    Scarabotti PA, López JA, Pouilly M. Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes. Ecol Freshw Fish. 2011;20:605–18.

    Google Scholar 

  • 43.

    Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.

    CAS  PubMed  Google Scholar 

  • 45.

    Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Röttjers L, Faust K. From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761–80.

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Duran-Pinedo AE, Paster B, Teles R, Frias-Lopez J. Correlation network analysis applied to complex biofilm communities. PLoS ONE. 2011;6:e28438.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Freilich MA, Wieters E, Broitman BR, Marquet PA, Navarrete SA. Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? Ecology. 2018;99:690–9.

    PubMed  Google Scholar 

  • 49.

    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359–1261359.

    PubMed  Google Scholar 

  • 50.

    Liu J, Zhu S, Liu X, Yao P, Ge T, Zhang XH. Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. ISME J. 2020;14:1463–78.

    PubMed  Google Scholar 

  • 51.

    Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 2017;25:217–28.

    CAS  PubMed  Google Scholar 

  • 52.

    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:1–31.

    Google Scholar 

  • 53.

    Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.

    CAS  Google Scholar 

  • 54.

    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:1–14.

    Google Scholar 

  • 55.

    Herren CM, McMahon KD. Keystone taxa predict compositional change in microbial communities. Environ Microbiol. 2018;20:2207–17.

    PubMed  Google Scholar 

  • 56.

    Neiff JJ. Large rivers of South America: toward the new approach. Verh Intern Ver Limnol. 1996;26:167–80.

    Google Scholar 

  • 57.

    Drago EC. The physical dynamics of the river-lake floodplain system. In: The middle Paraná River: limnology of a subtropical wetland. Berlin, Heidelberg: Springer-Verlag; 2007. p. 83–122.

    Google Scholar 

  • 58.

    Mayora G, Devercelli M, Giri F. Spatial variability of chlorophyll-a and abiotic variables in a river-floodplain system during different hydrological phases. Hydrobiologia. 2013;717:51–63.

    CAS  Google Scholar 

  • 59.

    Mayora G, Scarabotti P, Schneider B, Alvarenga P, Marchese M. Multiscale environmental heterogeneity in a large river-floodplain system. J South Am Earth Sci. 2020;100:102546.

    Google Scholar 

  • 60.

    Thomaz SM, Bini LM, Bozelli RL. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia. 2007;579:1–13.

    Google Scholar 

  • 61.

    Camilloni IA, Barros VR. Extreme discharge events in the Paraná River and their climate forcing. J Hydrol. 2003;278:94–106.

    Google Scholar 

  • 62.

    Depetris PJ, Probst JL, Pasquini AI, Gaiero DM. The geochemical characteristics of the Paraná River suspended sediment load: an initial assessment. Hydrol Process. 2003;17:1267–77.

    Google Scholar 

  • 63.

    Marchese M, de Drago IE. Benthos of the lotic environments in the middle Paraná River system: transverse zonation. Hydrobiologia. 1992;237:1–13.

    CAS  Google Scholar 

  • 64.

    Zilli FL, Paggi AC. Ecological responses to different degrees of hydrologic connectivity: assessing patterns in the bionomy of benthic chironomids in a large river-floodplain system. Wetlands. 2013;33:837–45.

    Google Scholar 

  • 65.

    José de Paggi SB, Devercelli M, Molina FR. Zooplankton and their driving factors in a large subtropical river during low water periods. Fundam Appl Limnol/Arch für Hydrobiol. 2014;184:125–39.

    Google Scholar 

  • 66.

    Fernandez Zenoff V, Sineriz F, Farias ME. Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl Environ Microbiol. 2006;72:7857–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Logares R. Workflow for analysing MiSeq amplicons based on Uparse v1.5.: https://github.com/ramalok/amplicon_processing. 2017. https://doi.org/10.5281/zenodo.259579.

  • 70.

    Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. 2016;081257. https://doi.org/10.1101/081257.

  • 71.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package. R package version 2.0-9. 2013. http://CRAN.R-project.org/package=vegan.

  • 72.

    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. https://www.R-project.org/.

  • 73.

    Ranjard L, Dequiedt S, Chemidlin Prévost-Bouré N, Thioulouse J, Saby NPA, Lelievre M, et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat Commun. 2013;4:1–10.

    Google Scholar 

  • 74.

    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.

    Google Scholar 

  • 75.

    Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006;62:245–53.

    Google Scholar 

  • 76.

    Anderson MJ, Walsh DCI, Robert Clarke K, Gorley RN, Guerra-Castro E. Some solutions to the multivariate Behrens–Fisher problem for dissimilarity-based analyses. Aust N Zeal J Stat. 2017;59:57–79.

    Google Scholar 

  • 77.

    Pedrós-Alió C. The rare bacterial biosphere. Ann Rev Mar Sci. 2012;4:449–66.

    PubMed  Google Scholar 

  • 78.

    Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:1–32.

    Google Scholar 

  • 79.

    Fine PVA, Kembel SW. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography. 2011;34:552–65.

    Google Scholar 

  • 80.

    Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu Rev Ecol Syst. 2002;33:475–505.

    Google Scholar 

  • 81.

    Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics. 2008;24:2098–2100.

    CAS  PubMed  Google Scholar 

  • 82.

    Kembel SW. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett. 2009;12:949–60.

    PubMed  Google Scholar 

  • 83.

    Oden NL, Sokal RR. Directional autocorrelation: an extension of spatial correlograms to two dimensions. Syst Zool. 1986;35:608–17.

    Google Scholar 

  • 84.

    Diniz-Filho JAF, Terribile LC, Da Cruz MJR, Vieira LCG. Hidden patterns of phylogenetic non-stationarity overwhelm comparative analyses of niche conservatism and divergence. Glob Ecol Biogeogr. 2010;19:916–26.

    Google Scholar 

  • 85.

    Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 86.

    Andersson AF, Riemann L, Bertilsson S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 2010;4:171–81.

    PubMed  Google Scholar 

  • 87.

    Chase JM, Myers JA. Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B Biol Sci. 2011;366:2351–63.

    Google Scholar 

  • 88.

    Chase JM. Picante: R tools for integrating phylogenies and ecology. Oecologia 2003;136:489–98.

    PubMed  Google Scholar 

  • 89.

    Dray S, Legendre P, Peres-Neto PR. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Modell. 2006;196:483–93.

    Google Scholar 

  • 90.

    Braak CJF ter, Šmilauer P. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (Version 5). Ithaca, NY: Section on Permutation Methods Microcomputer Power; 2012.

    Google Scholar 

  • 91.

    Legendre P, Legendre L. Numerical ecology. Oxford, U.K.: Elsevier Scientific; 1998.

  • 92.

    Faust K, Lima-Mendez G, Lerat JS, Sathirapongsasuti JF, Knight R, Huttenhower C, et al. Cross-biome comparison of microbial association networks. Front Microbiol. 2015;6:1–13.

    Google Scholar 

  • 93.

    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1–16.

    Google Scholar 

  • 94.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 95.

    Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the Human Microbiome. PLoS Comput Biol. 2012;8. https://doi.org/10.1371/journal.pcbi.1002606.

  • 96.

    Volterra V. Variazioni flultuazioni del numero d’invididui in specie convirenti. Men Acad Lincei. 1926;2:31–113.

    Google Scholar 

  • 97.

    Assenov Y, Ramírez F, Schelhorn SESE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008;24:282–4.

    CAS  PubMed  Google Scholar 

  • 98.

    Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019;13:1722–36.

    PubMed  PubMed Central  Google Scholar 

  • 99.

    Cao X, Zhao D, Xu H, Huang R, Zeng J, Yu Z. Heterogeneity of interactions of microbial communities in regions of Taihu Lake with different nutrient loadings: a network analysis. Sci Rep. 2018;8:1–11.

    Google Scholar 

  • 100.

    Newman MEJ. The structure and function of complex networks. Soc Ind Appl Math Rev. 2003;45:167–256.

    Google Scholar 

  • 101.

    Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.

    PubMed  Google Scholar 

  • 102.

    Newman MEJ. A measure of betweenness centrality based on random walks. Soc Netw. 2005;27:39–54.

    Google Scholar 

  • 103.

    Brandes U. A faster algorithm for betweenness centrality. J Math Sociol. 2001;25:163–77.

    Google Scholar 

  • 104.

    Powell JR, Karunaratne S, Campbell CD, Yao H, Robinson L, Singh BK. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nat Commun. 2015;6:1–10.

    CAS  Google Scholar 

  • 105.

    Weilhoefer CL, Pan Y, Eppard S. The effects of river floodwaters on floodplain wetland water quality and diatom assemblages. Wetlands. 2008;28:473–86.

    Google Scholar 

  • 106.

    Unrein F. Changes in phytoplankton community along a transversal section of the lower Paraná floodplain, Argentina. Hydrobiologia. 2002;468:123–34.

    Google Scholar 

  • 107.

    Vass M, Székely AJ, Lindström ES, Langenheder S. Using null models to compare bacterial and microeukaryotic metacommunity assembly under shifting environmental conditions. Sci Rep. 2020;10:1–13.

    Google Scholar 

  • 108.

    Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019;10:4841.

    PubMed  PubMed Central  Google Scholar 

  • 109.

    Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.

    PubMed  Google Scholar 

  • 110.

    Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009;459:193–9.

    CAS  PubMed  Google Scholar 

  • 111.

    Newman MEJ. The structure and function of networks. Comput Phys Commun. 2002;147:40–47.

    Google Scholar 


  • Source: Ecology - nature.com

    Novel gas-capture approach advances nuclear fuel management

    Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses