in

Sediment microbial fuel cells as a barrier to sulfide accumulation and their potential for sediment remediation beneath aquaculture pens

  • 1.

    El-Naggar, M. Y. et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 107, 18127–18131 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Du Toit, A. Exporting electrons. Nat. Rev. Microbiol. 16, 657 (2018).

    PubMed  Google Scholar 

  • 3.

    Lovley, D. R. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol. 17, 327–332 (2006).

    CAS  PubMed  Google Scholar 

  • 4.

    Myers, J. M. & Myers, C. R. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67, 260–269 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. & Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Rabaey, K., Boon, N., Höfte, M. & Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401–3408 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Potter, M. C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. B Biol. Sci. 84, 260–276 (1911).

    ADS  Google Scholar 

  • 9.

    Logan, B. E. & Regan, J. M. Microbial fuel cells—challenges and applications. Environ. Sci. Technol. 40, 5172–5180 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Trapero, J. R., Horcajada, L., Linares, J. J. & Lobato, J. Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl. Energy 185, 698–707 (2017).

    CAS  Google Scholar 

  • 11.

    Reimers, C. E., Tender, L. M., Fertig, S. & Wang, W. Harvesting energy from the marine sediment−water interface. Environ. Sci. Technol. 35, 192–195 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Tender, L. M. et al. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20, 821–825 (2002).

    CAS  PubMed  Google Scholar 

  • 13.

    Kubota, K. et al. Operation of sediment microbial fuel cells in Tokyo Bay, an extremely eutrophicated coastal sea. Bioresour. Technol. Rep. 6, 39–45 (2019).

    Google Scholar 

  • 14.

    Chun, C. L., Payne, R. B., Sowers, K. R. & May, H. D. Electrical stimulation of microbial PCB degradation in sediment. Water Res. 47, 141–152 (2013).

    CAS  PubMed  Google Scholar 

  • 15.

    Gajda, I., Greenman, J. & Ieropoulos, I. A. Recent advancements in real-world microbial fuel cell applications. Curr. Opin. Electrochem. 11, 78–83 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).

    ADS  CAS  Google Scholar 

  • 18.

    Hasvold, Ø et al. Sea-water battery for subsea control systems. J. Power Sources 65, 253–261 (1997).

    ADS  CAS  Google Scholar 

  • 19.

    Li, H. et al. Pilot-scale benthic microbial electrochemical system (BMES) for the bioremediation of polluted river sediment. J. Power Sources 356, 430–437 (2017).

    ADS  CAS  Google Scholar 

  • 20.

    Sherafatmand, M. & Ng, H. Y. Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresour. Technol. 195, 122–130 (2015).

    CAS  PubMed  Google Scholar 

  • 21.

    Sajana, T. K., Ghangrekar, M. M. & Mitra, A. Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality. Aquac. Eng. 57, 101–107 (2013).

    Google Scholar 

  • 22.

    Sajana, T. K., Ghangrekar, M. M. & Mitra, A. Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water. Aquac. Eng. 61, 17–26 (2014).

    Google Scholar 

  • 23.

    Giles, H. Using Bayesian networks to examine consistent trends in fish farm benthic impact studies. Aquaculture 274, 181–195 (2008).

    Google Scholar 

  • 24.

    Karakassis, I., Tsapakis, M., Hatziyanni, E., Papadopoulou, K. N. & Plaiti, W. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES J. Mar. Sci. 57, 1462–1471 (2000).

    Google Scholar 

  • 25.

    Nøhr Glud, R., Gundersen, J. K., Barker Jørgensen, B., Revsbech, N. P. & Schulz, H. D. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep. Res. I 41, 1767–1788 (1994).

    Google Scholar 

  • 26.

    Van Duyl, F. C., Kop, A. J., Kok, A. & Sandee, A. J. J. The impact of organic matter and macrozoobenthos on bacterial and oxygen variables in marine sediment boxcosms. Neth. J. Sea Res. 29, 343–355 (1992).

    Google Scholar 

  • 27.

    Brooks, K. M. & Mahnken, C. V. Interactions of Atlantic salmon in the Pacific northwest environment II. Organic wastes. Fish. Res. 62, 255–293 (2003).

    Google Scholar 

  • 28.

    Mackin, J. E. & Swider, K. T. Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. J. Mar. Res. 47, 681–716 (1989).

    CAS  Google Scholar 

  • 29.

    Holmer, M. & Kristensen, E. Impact of marine fish cage farming on metabolism and sulfate reduction of underlying sediments. Mar. Ecol. Prog. Ser. 80, 191–201 (1992).

    ADS  CAS  Google Scholar 

  • 30.

    Carroll, M. L., Cochrane, S., Fieler, R., Velvin, R. & White, P. Organic enrichment of sediments from salmon farming in Norway: Environmental factors, management practices, and monitoring techniques. Aquaculture https://doi.org/10.1016/S0044-8486(03)00475-7 (2003).

    Article  Google Scholar 

  • 31.

    Hargrave, B. T. Empirical relationships describing benthic impacts of salmon aquaculture. Aquac. Environ. Interact. 1, 33–46 (2010).

    Google Scholar 

  • 32.

    Bagarinao, T. Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat. Toxicol. 24, 21–62 (1992).

    CAS  Google Scholar 

  • 33.

    Hargrave, B. T., Holmer, M. & Newcombe, C. P. Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Mar. Pollut. Bull. 56, 810–824 (2008).

    CAS  PubMed  Google Scholar 

  • 34.

    Ryckelynck, N., Stecher, H. A. & Reimers, C. E. Understanding the anodic mechanism of a seafloor fuel cell: Interactions between geochemistry and microbial activity. Biogeochemistry 76, 113–139 (2005).

    Google Scholar 

  • 35.

    Ishii, S. et al. Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells. Water Res. 47, 7120–7130 (2013).

    CAS  PubMed  Google Scholar 

  • 36.

    Fader, G.B.J. & Miller, R.O. Surficial Geology, Halifax Harbour, Nova Scotia. Bulletin of the Geological Survey of Canada (2008).

  • 37.

    Grant, J., Emerson, C. W., Hargrave, B. T. & Shortle, J. L. Benthic oxygen consumption on continental shelves off eastern Canada. Cont. Shelf Res. 11, 1083–1097 (1991).

    ADS  Google Scholar 

  • 38.

    Logan, B. E. Microbial fuel cells. In Treatise on Water Science, Vol. 4 (ed. Wilderer, P.) 641–665 (Wiley, New York, 2010).

    Google Scholar 

  • 39.

    Taillefert, M. et al. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: part II—Iron—sulfur coupling. Deep. Res. II Top. Stud. Oceanogr. 142, 151–166 (2017).

    ADS  CAS  Google Scholar 

  • 40.

    Canfield, D. E., Raiswell, R. & Bottrell, S. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292, 659–683 (1992).

    ADS  CAS  Google Scholar 

  • 41.

    Boudreau, B. P. Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments (Springer, Berlin Heidelberg, 1996).

    Google Scholar 

  • 42.

    Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).

    Google Scholar 

  • 43.

    Berg, P., Risgaard-petersen, N. & Silkeborg, D. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).

    ADS  CAS  Google Scholar 

  • 44.

    Hargrave, B. T. Seasonal changes in oxygen uptake by settled particulate matter and sediments in a marine bay. J. Fish. Res. Board Can. 35, 1621–1628 (1978).

    CAS  Google Scholar 

  • 45.

    Viggi, C. C. et al. Bridging spatially segregated redox zones with a microbial electrochemical snorkel triggers biogeochemical cycles in oil-contaminated River Tyne (UK) sediments. Water Res. 127, 11–21 (2017).

    CAS  PubMed  Google Scholar 

  • 46.

    Brüchert, V. & Arnosti, C. Anaerobic carbon transformation: Experimental studies with flow-through cells. Mar. Chem. 80, 171–183 (2003).

    Google Scholar 

  • 47.

    Arnosti, C. Microbial extracellular enzymes and their role in dissolved organic matter cycling. Aquat. Ecosyst. https://doi.org/10.1016/b978-012256371-3/50014-7 (2003).

    Article  Google Scholar 

  • 48.

    Lehman, R. M. & O’Connell, S. P. Comparison of extracellular enzyme activities and community composition of attached and free-living bacteria in porous medium columns. Appl. Environ. Microbiol. 68, 1569–1575 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Reimers, C. E. et al. Microbial fuel cell energy from an ocean cold seep. Geobiology 4, 123–136 (2006).

    CAS  Google Scholar 

  • 50.

    Jørgensen, B. B., Findlay, A. J. & Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 10, 849 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Lovley, D. R. Happy together: Microbial communities that hook up to swap electrons. ISME J. 11, 327–336 (2017).

    CAS  PubMed  Google Scholar 

  • 52.

    Finster, K., Liesack, W. & Thamdrup, B. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 64, 119–125 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Kelly, D. P., Shergill, J. K., Lu, W. P. & Wood, A. P. Oxidative metabolism of inorganic sulfur compounds by bacteria. Int. J. Gen. Mol. Microbiol. 71, 95–107 (1997).

    CAS  Google Scholar 

  • 54.

    Keeley, N. B., Forrest, B. M. & Macleod, C. K. Novel observations of benthic enrichment in contrasting flow regimes with implications for marine farm monitoring and management. Mar. Pollut. Bull. 66, 105–116 (2013).

    CAS  PubMed  Google Scholar 

  • 55.

    Cranford, P., Brager, L., Elvines, D., Wong, D. & Law, B. A revised classification system describing the ecological quality status of organically enriched marine sediments based on total dissolved sulfides. Mar. Pollut. Bull. 154, 111088 (2020).

    CAS  PubMed  Google Scholar 

  • 56.

    Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R. & Greenwood, J. The effect of biogeochemical processes on pH. Mar. Chem. 105, 30–51 (2007).

    CAS  Google Scholar 

  • 57.

    Seitaj, D. et al. Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc. Natl. Acad. Sci. USA 112, 13278–13283 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 58.

    Di Toro, D. M. et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Sci. Technol. 26, 96–101 (1992).

    ADS  Google Scholar 

  • 59.

    Brooks, K. M. & Mahnken, C. V. W. Interactions of Atlantic salmon in the Pacific Northwest environment. III. Accumulation of zinc and copper. Fish. Res. 62, 295–305 (2003).

    Google Scholar 

  • 60.

    Fitridge, I., Dempster, T., Guenther, J. & de Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 28, 649–669 (2012).

    PubMed  Google Scholar 

  • 61.

    FOA. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all (2016).

  • 62.

    Millero, F. J., Plese, T. & Fernandez, M. The dissociation of hydrogen sulfide in seawater. Limnol. Oceanogr. 33, 269–274 (1988).

    ADS  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Political dynamics and governance of World Heritage ecosystems

    Special issue: Biofunctional gels