Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry (Oxford University Press, 2004).
Blest, A. D. The function of eyespot patterns in the Lepidoptera. Behaviour11, 209–256 (1957).
Poulton, E. B. The Colours of Animals: Their Meaning and Use Especially Considered In the Case of Insects. The Scientific Series (Appleton and Co., 1890).
Cott, H. B. Adaptive Coloration in Animals (Methuen & Co. Ltd., 1940).
Tinbergen, N. Curious Naturalists (Penguin Education Books., 1974).
Duellman, W. E. & Trueb, L. Biology of Amphibians (The Johns Hopkins University Press).
Stevens, M. The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biol. Rev. Camb. Philos. Soc.80, 573–588 (2005).
Kjernsmo, K. & Merilaita, S. Resemblance to the enemy’s eyes underlies the intimidating effect of eyespots. Am. Nat.190, 594–600 (2017).
Kodandaramaiah, U. The evolutionary significance of butterfly eyespots. Behav. Ecol.22, 1264–1271 (2011).
Stevens, M. & Ruxton, G. D. Do animal eyespots really mimic eyes? Curr. Zool.60, 26–36 (2014).
Stevens, M. Anti-predator coloration and behaviour: a longstanding topic with many outstanding questions. Curr. Zool.61, 702–707 (2015).
Lyytinen, A., Brakefield, P. M., Lindström, L. & Mappes, J. Does predation maintain eyespot plasticity in Bicyclus anynana? Proc. R. Soc. B Biol. Sci.271, 279–283 (2004).
Hill, R. I. & Vaca, J. F. Differential wing strength in Pierella butterflies (Nymphalidae, Satyrinae) supports the deflection hypothesis1. Biotropica36, 362 (2004).
Olofsson, M., Vallin, A., Jakobsson, S. & Wiklund, C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS ONE5, e10798 (2010).
Vallin, A., Dimitrova, M., Kodandaramaiah, U. & Merilaita, S. Deflective effect and the effect of prey detectability on anti-predator function of eyespots. Behav. Ecol. Sociobiol.65, 1629–1636 (2011).
Deppe, C. et al. Effect of northern pygmy-owl (Glaucidium gnoma) eyespots on avian mobbing. Auk120, 765–771 (2012).
Pinheiro, C. E. G., Antezana, M. A. & Machado, L. P. Evidence for the deflective function of eyespots in wild junonia evarete cramer (Lepidoptera, Nymphalidae). Neotrop. Entomol.43, 39–47 (2014).
Prudic, K. L., Stoehr, A. M., Wasik, B. R. & Monteiro, A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1531 (2015).
Vallin, A., Jakobsson, S. & Wiklund, C. ‘An eye for an eye?’—on the generality of the intimidating quality of eyespots in a butterfly and a hawkmoth. Behav. Ecol. Sociobiol.61, 1419–1424 (2007).
Merilaita, S. et al. Number of eyespots and their intimidating effect on naïve predators in the peacock butterfly. Behav. Ecol.22, 1326–1331 (2011).
Hossie, T. J. & Sherratt, T. N. Defensive posture and eyespots deter avian predators from attacking caterpillar models. Anim. Behav.86, 383–389 (2013).
Skelhorn, J., Dorrington, G., Hossie, T. J. & Sherratt, T. N. The position of eyespots and thickened segments influence their protective value to caterpillars. Behav. Ecol.25, 1417–1422 (2014).
De Bona, S., Valkonen, J. K., López-Sepulcre, A. & Mappes, J. Predator mimicry, not conspicuousness, explains the efficacy of butterfly eyespots. Proc. Biol. Sci.282, 20150202 (2015).
Stevens, M. et al. Field experiments on the effectiveness of ‘eyespots’ as predator deterrents. Anim. Behav.74, 1215–1227 (2007).
Stevens, M., Hardman, C. J. & Stubbins, C. L. Conspicuousness, not eye mimicry, makes ‘eyespots’ effective antipredator signals. Behav. Ecol.19, 525–531 (2008).
Stevens, M. & Winney, I. The function of animal’ eyespots’: conspicuousness but not eye mimicry is key. Curr. Zool.55, 319–326 (2009).
Yorzinski, J. L., Platt, M. L. & Adams, G. K. Eye-spots in Lepidoptera attract attention in humans. R. Soc. Open Sci.2, https://doi.org/10.1098/rsos.150155 (2015).
Young, B. A. & Kardong, K. V. The functional morphology of hooding in cobras. J. Exp. Biol.213, 1521–1528 (2010).
Mukherjee, R. & Kodandaramaiah, U. What makes eyespots intimidating-the importance of pairedness Evolutionary ecology and behaviour. BMC Evol. Biol.15, 28–31 (2015).
Scaife, M. The response to eye-like shapes by birds II. The importance of staring, pairedness and shape. Anim. Behav.24, 200–206 (1976).
Jones, R. B. Reactions of male domestic chicks to two-dimensional eye-like shapes. Anim. Behav.28, 212–218 (1980).
Balgooyen, T. G. Another possible function of the American kestrel’s deflection face. Jack-Pine Warbler 53, 115–116 (1975).
Negro, J. J., Bortolotti, G. R. & Sarasola, J. H. Deceptive plumage signals in birds: Manipulation of predators or prey? Biol. J. Linn. Soc.90, 467–477 (2007).
Hasson, O. Pursuit-deterrent signals: communication between prey and predator. Trends Ecol. Evol.6, 325–329 (1991).
Caro, T. M. Pursuit-deterrence revisited. Trends Ecol. Evol.10, 500–503 (1995).
Powell, K. L., Roberts, G. & Nettle, D. Eye images increase charitable donations: evidence from an opportunistic field experiment in a supermarket. Ethology118, 1096–1101 (2012).
Nettle, D., Nott, K. & Bateson, M. ‘Cycle thieves, we are watching you’: impact of a simple signage intervention against bicycle theft. PLoS ONE7, 8–12 (2012).
Bateson, M. et al. Watching eyes on potential litter can reduce littering: evidence fromtwo field experiments. PeerJ2015, 1–15 (2015).
Miklosi, A. et al. A simple reason for a big difference: wolves do not look back at humans, but dogs do. Curr. Biol.13, 763–766 (2003).
Wallis, L. J. et al. Training for eye contact modulates gaze following in dogs. Anim. Behav.106, 27–35 (2015).
Johnston, A. M., Turrin, C., Watson, L., Arre, A. M. & Santos, L. R. Uncovering the origins of dog–human eye contact: dingoes establish eye contact more than wolves, but less than dogs. Anim. Behav.133, 123–129 (2017).
Pongrácz, P., Szapu, J. S. & Faragó, T. Cats (Felis silvestris catus) read human gaze for referential information. Intelligence https://doi.org/10.1016/j.intell.2018.11.001 (2019)
Simons, M. Face Masks Fool the Bengal Tigers (The New York Times, 1989).
van Eeden, L. M. et al. Managing conflict between large carnivores and livestock. Conservation Biology. 32, 26–34 (2018).
Paddle, R. The Last Tasmanian Tiger: The History and Extinction of the Thylacine (Cambridge University Press, 2000). https://doi.org/10.2307/4127234.
Breitenmoser, U. Large predators in the Alps: the fall and rise of man’s competitors. Biol. Conserv.83, 279–289 (1998).
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science343, 1241484 (2014).
Treves, A., Krofel, M. & McManus, J. Predator control should not be a shot in the dark. Front. Ecol. Environ.14, 380–388 (2016).
Weise, F. J. et al. Size, shape and maintenance matter: a critical appraisal of a global carnivore conflict mitigation strategy—livestock protection kraals in northern Botswana. Biol. Conserv.225, 88–97 (2018).
Holland, K. K., Larson, L. R. & Powell, R. B. Characterizing conflict between humans and big cats Panthera spp: A systematic review of research trends and management opportunities. PLoS ONE13, 1–19 (2018).
McNutt, J. W., Stein, A. B., McNutt, L. B. & Jordan, N. R. Living on the edge: Characteristics of human-wildlife conflict in a traditional livestock community in Botswana. Wildl. Res.44, 546–557 (2017).
Johnson, W. E., Eizirik, E. & Lento, G. M. in Carnivore Conservation (eds MacDonald, D. W. & Wayne, R. K.) 196–220 (Cambridge University Press, 2001).
Holley, A. J. F. Do Brown Hares signal to foxes? Ethology94, 21–30 (1993).
Godin, J. G. J. & Davis, S. A. Who dares, benefits: predator approach behaviour in the guppy (Poecilia reticulata) deters predator pursuit. Proc. R. Soc. B Biol. Sci.259, 193–200 (1995).
Hunter, L. Cats of Africa: Behaviour, Ecology, and Conservation (Struik Publishers, 2005).
Schaller, G. B. The Serengeti Lion: A Study of Predator-prey Relations (The University of Chicago Press, 1972).
Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol.29, 445–454 (1992).
McNamara, K., O’Kiely, P., Whelan, J., Forristal, P. D. & Lenehan, J. Preventing bird damage to wrapped baled silage during short- and long-term storage. Wildl. Soc. Bull.30, 809–815 (2002).
Gittleman, J. L. & Harvey, P. H. Why are distasteful prey not cryptic? Nature286, 149–150 (1980).
Roper, T. J. & Redston, S. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Anim. Behav.35, 739–747 (1987).
Watson, F. G. R., Becker, M. S., Milanzi, J. & Nyirenda, M. Human encroachment into protected area networks in Zambia: implications for large carnivore conservation. Reg. Environ. Chang.15, 415–429 (2014).
Di Minin, E. et al. Global priorities for national carnivore conservation under land use change. Sci. Rep.6, 23814 (2016).
Gusset, M., Swarner, M. J., Mponwane, L., Keletile, K. & McNutt, J. W. Human–wildlife conflict in northern Botswana: livestock predation by Endangered African wild dog. Oryx43, 67–72 (2009).
Mosser, A. & Packer, C. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim. Behav.78, 359–370 (2009).
Cozzi, G., Broekhuis, F., McNutt, J. W. & Schmid, B. Density and habitat use of lions and spotted hyenas in northern Botswana and the influence of survey and ecological variables on call-in survey estimation. Biodivers. Conserv.22, 2937–2956 (2013).
Joron, M., Carde, R. T. & Resh, V. H. in Encyclopedia of Insects 39–45 (New York Academic Press, 2003).
Sunquist, M. & Sunquist, F. Wild Cats of the World (The University of Chicago Press, 2002).
Therneau, T. M. coxme: Mixed effects cox models in R. R package version 3.2-3 (2020).
Therneau, T. M. A Package for Survival Analysis in R. R package version 3.2-3. https://CRAN.R-project.org/package=survival (2020).
Tang, Y., Horikoshi, M. & Li, W. ggfortify: Unified interface to visualise statistical result of popular R packages. R. J.8.2, 478–489 (2016).
Horikoshi, M. & Tang, Y. ggfortify: Data Visualization Tools for Statistical Analysis Results. https://CRAN.R-project.org/package=ggfortify.
Heinze, G. & Schemper, M. A solution to the problem of separation in logistic regression. Stat. Med.21, 2409–2419 (2002).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B57, 289–300 (2017).
Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw.40, 1–25 (2011).
Wickham, H., Francois, R., Henry, L. & Muller, K. dplyr: A grammar of data manipulation. R package version 0.4 3 (2015).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using lme4. https://doi.org/10.18637/jss.v067.i01 (2014).
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.1.6 (2017).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).
Jordan, N. R., Radford, C., Rogers, T., Maslen, B. & McNutt, J. W. (2020). Data & Code: Artificial eyespots on cattle reduce predation by large carnivores [Data set]. Zenodo. https://doi.org/10.5281/zenodo.3877999 (2020).
Source: Ecology - nature.com