in

Marine heatwaves and the collapse of marginal North Atlantic kelp forests

  • 1.

    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun.9, 650 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change2, 491–496 (2012).

    ADS  Google Scholar 

  • 3.

    Gaines, S. D. & Denny, M. W. The largest, smallest, highest, lowest, longest, and shortest: Extremes in ecology. Ecology74, 1677–1692 (1993).

    Google Scholar 

  • 4.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr.141, 227–238 (2016).

    ADS  Google Scholar 

  • 5.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change9, 306–312 (2019).

    ADS  Google Scholar 

  • 6.

    Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change8, 579–587 (2018).

    ADS  Google Scholar 

  • 7.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun.9, 1324 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun.8, 16101 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 9.

    IPCC. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, 2013).

  • 10.

    Jentsch, A. & Beierkuhnlein, C. External geophysics, climate and environment. C. R. Geosci.340 (2008).

  • 11.

    Wernberg, T., Smale, D. A. & Thomsen, M. S. A decade of climate change experiments on marine organisms: Procedures, patterns and problems. Glob. Change Biol.18, 1491–1498 (2012).

    ADS  Google Scholar 

  • 12.

    Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol.400, 218–226 (2011).

    Google Scholar 

  • 13.

    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography31, 162–173 (2018).

    Google Scholar 

  • 14.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change3, 78–82 (2013).

    ADS  Google Scholar 

  • 15.

    Wernberg, T., Krumhansl, K. A., Filbee-Dexter, K. & Pedersen, M. F. In World Seas: An Environmental Evaluation, Vol III: Ecological Issues and Environmental Impacts (ed. Sheppard, C.) (Academic Press, Cambridge, 2019).

  • 16.

    Lüning, K., Yarish, C. & Kirkman, H. Seaweeds: Their Environment, Biogeography, and Ecophysiology (Wiley, Hoboken, 1990).

    Google Scholar 

  • 17.

    Assis, J., Araújo, M. B. & Serrão, E. A. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Glob. Change Biol.24, e55–e66 (2018).

    ADS  Google Scholar 

  • 18.

    Wilson, K. L., Skinner, M. A. & Lotze, H. K. Projected 21st-century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change. Divers. Distrib. 25, 582–602. (2019).

    Article  Google Scholar 

  • 19.

    Fernández, C. The retreat of large brown seaweeds on the north coast of Spain: The case of Saccorhiza polyschides. Eur. J. Phycol.46, 352–360 (2011).

    Google Scholar 

  • 20.

    Filbee-Dexter, K., Feehan, C. J. & Scheibling, R. E. Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar. Ecol. Prog. Ser.543, 141–152 (2016).

    ADS  CAS  Google Scholar 

  • 21.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science (80-).353, 169–172 (2016).

    ADS  CAS  Google Scholar 

  • 22.

    Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep.9, 1–9 (2019).

    CAS  Google Scholar 

  • 23.

    Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci.6, 499 (2019).

    Google Scholar 

  • 24.

    Starko, S. et al. Environmental heterogeneity mediates scale-dependent declines in kelp diversity on intertidal rocky shores. PLoS ONE14, e0213191 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N. & Beas-Luna, R. Spatial variability in the resistance and resilience of giant kelp in southern and Baja California to a multiyear heatwave. Front. Mar. Sci.6, 413 (2019).

    Google Scholar 

  • 26.

    Simonson, E., Scheibling, R. & Metaxas, A. Kelp in hot water: I. Warming seawater temperature induces weakening and loss of kelp tissue. Mar. Ecol. Prog. Ser.537, 89–104 (2015).

    ADS  CAS  Google Scholar 

  • 27.

    Nepper-Davidsen, J., Andersen, D. T. & Pedersen, M. F. Effects of simulated heat wave scenarios on Saccharina latissima: Prolonged exposure to sub-lethal temperatures may cause irreversible damage. Mar. Ecol. Prog. Ser. 630, 25–39 (2020).

    ADS  Google Scholar 

  • 28.

    Hollarsmith, J. A., Buschmann, A. H., Camus, C. & Grosholz, E. D. Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis pyrifera) populations. J. Exp. Mar. Biol. Ecol.522, 151247 (2020).

    Google Scholar 

  • 29.

    Straub, S. C. Effects of marine heatwaves on canopy forming seaweeds and marine forests (University of Western Australia, Perth, 2019).

    Google Scholar 

  • 30.

    Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep.8, 1851 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci.5, 371–392 (2013).

    PubMed  Google Scholar 

  • 32.

    Filbee-Dexter, K. & Wernberg, T. Rise of Turfs: A new battlefront for globally declining kelp forests. Bioscience68, 64–76 (2018).

    Google Scholar 

  • 33.

    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci.9, 737–742 (2016).

    ADS  CAS  Google Scholar 

  • 34.

    Norderhaug, K. M. & Christie, H. Secondary production in a Laminaria hyperborea kelp forest and variation according to wave exposure. Estuar. Coast. Shelf Sci.95, 135–144 (2011).

    ADS  Google Scholar 

  • 35.

    Bertocci, I., Araújo, R., Oliveira, P. & Sousa-Pinto, I. Potential effects of kelp species on local fisheries. J. Appl. Ecol.52, 1216–1226 (2015).

    Google Scholar 

  • 36.

    Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser.612, 209–215 (2019).

    ADS  Google Scholar 

  • 37.

    Albretsen, J., Aure, J., Sætre, R. & Danielssen, D. S. Climatic variability in the Skagerrak and coastal waters of Norway. ICES J. Mar. Sci.69, 758–763 (2012).

    Google Scholar 

  • 38.

    Andersen, G. S., Steen, H., Christie, H., Fredriksen, S. & Emil Moy, F. Seasonal patterns of sporophyte growth, fertility, fouling, and mortality of Saccharina latissima in Skagerrak, Norway: Implications for Forest Recovery. J. Mar. Biol.2011, 690375 (2011).

    Google Scholar 

  • 39.

    Krumhansl, K. & Scheibling, R. Detrital production in Nova Scotian kelp beds: Patterns and processes. Mar. Ecol. Prog. Ser.421, 67–82 (2011).

    ADS  Google Scholar 

  • 40.

    Brady-Campbell, M. M., Campbell, D. B. & Harlin, M. M. Productivity of kelp (Laminaria spp.) near the southern limit in the Northwestern Atlantic Ocean. Mar. Ecol. Prog. Ser.18, 79–88 (1984).

    ADS  Google Scholar 

  • 41.

    Grace, S. P. Ecomorphology of the Temperate Scleractinian Astrangia poculata: Coral–Macroalgal Interactions in Narragansett Bay (University of Rhode Island, South Kingstown, 2004).

    Google Scholar 

  • 42.

    Moy, F. E. & Christie, H. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar. Biol. Res.8, 309–321 (2012).

    Google Scholar 

  • 43.

    Lee, J.-A. & Brinkhuis, B. H. Reproductive phenology of Laminaria saccharina (L.) Lamour. (Phaeophyta) at the southern limit of its distribution in the northwestern Atlantic Ocean. J. Phycol.22, 276–285 (1986).

    Google Scholar 

  • 44.

    Feehan, C. J., Grace, S. P. & Narvaez, C. A. Ecological feedbacks stabilize a turf-dominated ecosystem at the southern extent of kelp forests in the Northwest Atlantic. Sci. Rep.9, 7078 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Sjøtun, K. Seasonal lamina growth in two age groups of Laminaria saccharina (L.) Lamour. in Western Norway. Bot. Mar.36, 433–442 (1993).

    Google Scholar 

  • 46.

    Martinez, E. A., Cardenas, L. & Pinto, R. Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens (Phaeophyceae) 20 years after El Nino 1982/831. J. Phycol.39, 504–508 (2003).

    Google Scholar 

  • 47.

    Edwards, M. & Estes, J. Catastrophe, recovery and range limitation in NE Pacific kelp forests: A large-scale perspective. Mar. Ecol. Prog. Ser.320, 79–87 (2006).

    ADS  Google Scholar 

  • 48.

    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B Biol. Sci.372, 20160135 (2017).

    Google Scholar 

  • 49.

    Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish.24, 415–425 (2014).

    Google Scholar 

  • 50.

    Sjøtun, K., Fredriksen, S., Lein, T. E., Rueness, J. & Sivertsen, K. Population studies of Laminaria hyperborea from its northern range of distribution in Norway. Hydrobiologia260–261, 215–221 (1993).

    Google Scholar 

  • 51.

    O’Brien, J. M. & Scheibling, R. E. Low recruitment, high tissue loss, and juvenile mortality limit recovery of kelp following large-scale defoliation. Mar. Biol.165, 171 (2018).

    Google Scholar 

  • 52.

    Borum, K., Pedersen, M. F., Krause-Jensen, D. & Christensen, N. Biomass, photosynthesis and growth of Laminaria saccharina in a high-arctic fjord, NE Greenland. Mar. Biol.141, 11–19 (2002).

    Google Scholar 

  • 53.

    Nielsen, M. M. et al. Growth dynamics of Saccharina latissima (Laminariales, Phaeophyceae) in Aarhus Bay, Denmark, and along the species’ distribution range. Mar. Biol.161, 2011–2022 (2014).

    CAS  Google Scholar 

  • 54.

    tom Dieck, I. Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): Ecological and biogeographical implications. Mar. Ecol. Prog. Ser.100, 253–264 (1993).

    ADS  Google Scholar 

  • 55.

    Bolton, J. J. & Lüning, K. Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar. Biol.66, 89–94 (1982).

    Google Scholar 

  • 56.

    Andersen, G. S., Pedersen, M. F. & Nielsen, S. L. Temperature acclimation and heat tolerance of photosynthesis in Norwegian Saccharina latissima (Laminariales, Phaeophyceae). J. Phycol.49, 689–700 (2013).

    CAS  PubMed  Google Scholar 

  • 57.

    Jump, A. S. & Penuelas, J. Running to stand still: Adaptation and the response of plants to rapid climate change. Ecol. Lett.8, 1010–1020 (2005).

    Google Scholar 

  • 58.

    Niu, S. et al. Plant growth and mortality under climatic extremes: An overview. Environ. Exp. Bot.98, 13–19 (2014).

    Google Scholar 

  • 59.

    Bennett, S., Wernberg, T., Arackal Joy, B., de Bettignies, T. & Campbell, A. H. Central and rear-edge populations can be equally vulnerable to warming. Nat. Commun.6, 10280 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Gorman, D. & Connell, S. D. Recovering subtidal forests in human-dominated landscapes. J. Appl. Ecol.46, 1258–1265 (2009).

    Google Scholar 

  • 61.

    Burek, K., O’Brien, J. & Scheibling, R. Wasted effort: Recruitment and persistence of kelp on algal turf. Mar. Ecol. Prog. Ser.600, 3–19 (2018).

    ADS  Google Scholar 

  • 62.

    Norderhaug, K. M. et al. Effects of climate and eutrophication on the diversity of hard bottom communities on the Skagerrak coast 1990–2010. Mar. Ecol. Prog. Ser.530, 29–46 (2015).

    ADS  CAS  Google Scholar 

  • 63.

    Gorgula, S. & Connell, S. Expansive covers of turf-forming algae on human-dominated coast: The relative effects of increasing nutrient and sediment loads. Mar. Biol.145, 613–619 (2004).

    Google Scholar 

  • 64.

    Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B Biol. Sci.374, 20180550 (2019).

    Google Scholar 

  • 65.

    Lüning, K. Temperature tolerance and biogeography of seaweeds: The marine algal flora of Helgoland (North Sea) as an example. Helgoländer Meeresunters. 38, 305–317 (1984).

    Google Scholar 

  • 66.

    Lee, J. A. & Brinkhuis, B. H. Seasonal light and temperature interaction effects on development of Laminaria saccharina (Phaeophyta) gametophytes and juvenile sporophytes. J. Phycol.24, 181–191 (1988).

    Google Scholar 

  • 67.

    Pedersen, M. F. et al. Detrital carbon production and export in high latitude kelp forests. Oecologia192, 227–239 (2020).

    ADS  PubMed  Google Scholar 

  • 68.

    Schlegel, R. W. & Smit, A. J. heatwaveR: Detect Heatwaves and Cold-Spells. (2019).

  • 69.

    Wasko, C. & Sharma, A. Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour. Res.50, 3608–3614 (2014).

    ADS  Google Scholar 

  • 70.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015).

    Google Scholar 

  • 71.

    Schlegel, R. W. Marine Heatwave Tracker. https://doi.org/10.5281/zenodo.3787872 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    When the chemical industry met modern architecture

    MIT Energy Conference goes virtual