in

Bacterial mock communities as standards for reproducible cytometric microbiome analysis

  • 1.

    Müller, S. & Nebe-von-Caron, G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev. 34, 554–587 (2010).

    Article  Google Scholar 

  • 2.

    Günther, S. et al. Species-sorting and mass-transfer paradigms control managed natural metacommunities. Environ. Microbiol. 18, 4862–4877 (2016).

    Article  Google Scholar 

  • 3.

    Props, R., Monsieurs, P., Mysara, M., Clement, L. & Boon, N. Measuring the biodiversity of microbial communities by flow cytometry. Methods Ecol. Evol. 7, 1376–1385 (2016).

    Article  Google Scholar 

  • 4.

    Liu, Z. et al. Ecological stability properties of microbial communities assessed by flow cytometry. mSphere 3, e00564–17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Liu, Z. et al. Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ. Microbiol. 21, 164–181 (2019).

    CAS  Article  Google Scholar 

  • 6.

    De Vrieze, J., Boon, N. & Verstrate, W. Taking the technical microbiome into the next decade. Environ. Microbiol. 20, 1991–2000 (2018).

    Article  Google Scholar 

  • 7.

    Koch, C. et al. Cytometric fingerprinting for analyzing microbial intracommunity structure variation and identifying subcommunity function. Nat. Protoc. 8, 190–202 (2013).

    CAS  Article  Google Scholar 

  • 8.

    Mage, L. M. et al. Shape-based separation of synthetic microparticles. Nat. Mater. 18, 82–89 (2019).

    CAS  Article  Google Scholar 

  • 9.

    Müller, S. Modes of cytometric bacterial DNA pattern: a tool for pursuing growth. Cell Prolif. 40, 621–639 (2007).

    Article  Google Scholar 

  • 10.

    Ludwig, J., Höner zu Siederdissen, C., Liu, Z., Stadler, P. F. & Müller, S. flowEMMi: an automated model-based clustering tool for microbial cytometric data. BMC Bioinforma. 20, 643 (2019).

    CAS  Article  Google Scholar 

  • 11.

    Koch, C., Fetzer, I., Harms, H. & Müller, S. CHIC-an automated approach for the detection of dynamic variations in complex microbial communities. Cytom. A 83, 561–567 (2013).

    Article  Google Scholar 

  • 12.

    Liu, Z. & Müller, S. Bacterial community diversity dynamics highlight degrees of nestedness and turnover patterns. Cytom. Part A https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23965 (2020)

  • 13.

    Aghaeepour, N. et al. Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10, 228–238 (2013).

    CAS  Article  Google Scholar 

  • 14.

    Peters, J. M. & Ansari, M. Q. Multiparameter flow cytometry in the diagnosis and management of acute leukemia. Arch. Pathol. Lab. Med. 135, 44–54 (2011).

    PubMed  Google Scholar 

  • 15.

    Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  Article  Google Scholar 

  • 16.

    Spitzer, H. M. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    CAS  Article  Google Scholar 

  • 17.

    Overmann, J., Abt, B. & Sikorski, J. Present and future of culturing bacteria. Annu. Rev. Microbiol. 8, 711–730 (2017).

    Article  Google Scholar 

  • 18.

    Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Roesch, L. F. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290 (2007).

    CAS  Article  Google Scholar 

  • 20.

    Singer, E. et al. Next generation sequencing data of a defined microbial mock community. Sci. Data 3, 160081 (2016).

    Article  Google Scholar 

  • 21.

    Hallmaier-Wacker, L. K., Lueert, S., Roos, C. & Knauf, S. The impact of storage buffer, DNA extraction method, and polymerase on microbial analysis. Sci. Rep. 8, 6292 (2018).

    Article  Google Scholar 

  • 22.

    Hardwick, S. A. et al. Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. Nat. Commun. 9, 3096 (2018).

    Article  Google Scholar 

  • 23.

    Hornung, B. V. H., Zwittink, R. D. & Kuijper, E. J. Issues and current standards of controls in microbiome research. FEMS Microbiol. Ecol. 95, fiz045 (2019).

    CAS  Article  Google Scholar 

  • 24.

    Sze, M. A. & Schloss, P. D. The impact of DNA polymerase and number of rounds of amplification in PCR on 16S rRNA gene sequence data. mSphere 4, e00163–19 (2019).

    CAS  Article  Google Scholar 

  • 25.

    Clingenpeel, S., Clum, A., Schwientel, P., Rinke, C. & Woyke, T. Reconstructing each cell’s genome within complex communities—dream or reality? Front. Microbiol. 8, 771 (2015).

    Google Scholar 

  • 26.

    Stepanauskas, R. et al. Improved genome recovery and intergrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017).

    Article  Google Scholar 

  • 27.

    De Bruin, O. M. & Birnboim, H. C. A method for assessing efficiency of bacterial cell disruption and DNA release. BMC Microbiol. 16, 197 (2016).

    Article  Google Scholar 

  • 28.

    Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 25, 377–445 (1908).

    CAS  Article  Google Scholar 

  • 29.

    Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).

    CAS  Article  Google Scholar 

  • 30.

    Jahn, M. et al. Subpopulation-proteomics in prokaryotic populations. Curr. Opin. Biotech. 24, 79–87 (2013).

    CAS  Article  Google Scholar 

  • 31.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS  Article  Google Scholar 

  • 32.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  Article  Google Scholar 

  • 33.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • 34.

    Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds. Stackebrandt, E. & Goodfellow, M.) 115–175 (Wiley, 1991).

  • 35.

    Lambrecht, J. et al. Flow cytometric quantification, sorting and sequencing of methanogenic archaea based on F420 autofluorescence. Microb. Cell Fact. 16, 180 (2017).

    Article  Google Scholar 

  • 36.

    Besmer, M. D. et al. The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems. Front. Microbiol 5, 265 (2014).

    Article  Google Scholar 

  • 37.

    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).

    Article  Google Scholar 

  • 38.

    Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    When the chemical industry met modern architecture

    MIT Energy Conference goes virtual