in

Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India

  • 1.

    CO2 now. Earth’s CO Home Page. https://www.co2.earth/ (2020).

  • 2.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science333, 988–993. https://doi.org/10.1126/science.1201609 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage.259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).

    Article  Google Scholar 

  • 4.

    Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. Global soil carbon, understanding and managing the largest terrestrial carbon pool. Carbon Manage.5, 81–91. https://doi.org/10.4155/cmt.13.77 (2014).

    CAS  Article  Google Scholar 

  • 5.

    Lal, R. Forest soils and carbon sequestration. For. Ecol. Manage.220, 242–258. https://doi.org/10.1016/j.foreco.2005.08.015 (2005).

    Article  Google Scholar 

  • 6.

    Slik, J. W. F. et al. An estimate of the number of tropical tree species. Proc. Natl. Acad. Sci.112, E4628–E4629. https://doi.org/10.1073/pnas.1423147112 (2015).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Sullivan, M. J. et al. Diversity and carbon storage across the tropical forest biome. Sci. Rep.7, 39102. https://doi.org/10.1038/srep39102 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr.24, 1314–1328. https://doi.org/10.1111/geb.12364 (2015).

    Article  Google Scholar 

  • 9.

    Malhi, Y. A., Baldocchi, D. D. & Jarvis, P. G. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ.22, 715–740. https://doi.org/10.1046/j.1365-3040.1999.00453.x (1999).

    CAS  Article  Google Scholar 

  • 10.

    Jhariya, M. K. Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environ. Monit. Assess.189, 518. https://doi.org/10.1007/s10661-017-6246-2 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Mattsson, E., Ostwald, M., Wallin, G. & Nissanka, S. P. Heterogeneity and assessment uncertainties in forest characteristics and biomass carbon stocks: Important considerations for climate mitigation policies. Land Use Policy59, 84–94. https://doi.org/10.1016/j.landusepol.2016.08.026 (2016).

    Article  Google Scholar 

  • 12.

    Brown, S. & Lugo, A. E. Biomass of tropical forests, a new estimate based on forest volumes. Science223, 1290–1293. https://doi.org/10.1126/science.223.4642.1290 (1984).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 13.

    Dar, J. A. & Sundarapandian, S. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environ. Monit. Assess.187, 55. https://doi.org/10.1007/s10661-015-4299-7 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Dar, J. A., Rather, M. Y., Subashree, K., Sundarapandian, S. & Khan, M. L. Distribution patterns of tree, understorey, and detritus biomass in coniferous and broad-leaved forests of Western Himalaya, India. J. Sust. For.36, 787–805. https://doi.org/10.1080/10549811.2017.1363055 (2017).

    Article  Google Scholar 

  • 15.

    Gandhi, D. S. & Sundarapandian, S. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats. India. Environ. Monit. Assess.189, 187. https://doi.org/10.1007/s10661-017-5899-1 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Ruiz-Benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr.23, 311–322. https://doi.org/10.1111/geb.12126 (2014).

    Article  Google Scholar 

  • 17.

    Huang, Y. et al. Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. J. Plant Ecol.10, 28–35. https://doi.org/10.1093/jpe/rtw115 (2017).

    Article  Google Scholar 

  • 18.

    Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun.4, 1340. https://doi.org/10.1038/ncomms2328 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Chisholm, R. A. et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol.101, 1214–1224. https://doi.org/10.1111/1365-2745.12132 (2013).

    Article  Google Scholar 

  • 20.

    Ferreira, J. et al. Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat. Clim. Chang. https://doi.org/10.1038/s41558-018-0225-7 (2018).

    Article  Google Scholar 

  • 21.

    Sullivan, T. P., Sullivan, D. S. & Lindgren, P. M. F. Influence of variable retention harvests on forest ecosystems. I. Diversity of stand structure. J. Appl. Ecol.38, 1221–1233. https://doi.org/10.1046/j.0021-8901.2001.00671.x (2001).

    Article  Google Scholar 

  • 22.

    van der Sande, M. T. et al. Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica49, 593–603. https://doi.org/10.1111/btp.12453 (2017).

    Article  Google Scholar 

  • 23.

    Bastin, J. F. et al. The global tree restoration potential. Science365, 76–79. https://doi.org/10.1126/science.aax0848 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 24.

    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science365, 24–25. https://doi.org/10.1126/science.aax9539 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 25.

    Sierra, C. A. et al. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For. Ecol. Manage.243, 299–309. https://doi.org/10.1016/j.foreco.2007.03.026 (2007).

    Article  Google Scholar 

  • 26.

    Vayreda, J. et al. Spatial patterns and predictors of forest carbon stocks in Western Mediterranean. Ecosystems15, 1258–1270. https://doi.org/10.1007/s10021-012-9582-7 (2012).

    CAS  Article  Google Scholar 

  • 27.

    Behera, S. K. et al. Aboveground biomass and carbon stock assessment in Indian tropical deciduous forest and relationship with stand structural attributes. Ecol. Eng.99, 513–524. https://doi.org/10.1016/j.ecoleng.2016.11.046 (2017).

    Article  Google Scholar 

  • 28.

    Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr.26, 1423–1434. https://doi.org/10.1111/geb.12668 (2017).

    Article  Google Scholar 

  • 29.

    Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B Biol. Sci.285, 20181240. https://doi.org/10.1098/rspb.2018.1240 (2018).

    CAS  Article  Google Scholar 

  • 30.

    Amara, E. et al. Relationship between carbon stocks and tree species diversity in a humid Guinean Savanna landscape in northern Sierra Leone. South For. https://doi.org/10.2989/20702620.2018.1555947 (2019).

    Article  Google Scholar 

  • 31.

    Li, Y. et al. Drivers of tree carbon storage in subtropical forests. Sci. Total Environ.654, 684–693. https://doi.org/10.1016/j.scitotenv.2018.11.024 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 32.

    Muntean, M. et al.Fossil CO2emissions of all world countries—2018 report emissions of all world countries—2018 report (Publications Office of the European Union, Luxembourg, 2018). https://doi.org/10.2760/30158

    Google Scholar 

  • 33.

    India State of Forest Report 2019. Forest Survey of India, Edition 16, Ministry of Environment, Forest & Climate Change, Government of India. https://www.fsi.nic.in/forest-report-2019 (2019).

  • 34.

    Puyravaud, J. P., Davidar, P. & Laurance, W. F. Cryptic destruction of India’s native forests. Cons. Lett.3, 390–394. https://doi.org/10.1111/j.1755-263X.2010.00141.x (2010).

    Article  Google Scholar 

  • 35.

    Seen, D. L. et al. Soil carbon stocks, deforestation and land-cover changes in the Western Ghats biodiversity hotspot (India). Glob. Change Biol.16, 1777–1792. https://doi.org/10.1111/j.1365-2486.2009.02127.x (2010).

    ADS  Article  Google Scholar 

  • 36.

    Osuri, A. M., Kumar, V. S. & Sankaran, M. Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India’s Western Ghats. For. Ecol. Manage.329, 375–383. https://doi.org/10.1016/j.foreco.2014.01.039 (2014).

    Article  Google Scholar 

  • 37.

    Padmakumar, B. et al. Tree biomass and carbon density estimation in the tropical dry forest of Southern Western Ghats, India. iForest11, 534–541. https://doi.org/10.3832/ifor2190-011 (2018).

    Article  Google Scholar 

  • 38.

    Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci.368, 20120295–20120295. https://doi.org/10.1098/rstb.2012.0295 (2013).

    Article  Google Scholar 

  • 39.

    Slik, J. W. F. et al. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob. Ecol. Biogeogr.19, 50–60. https://doi.org/10.1111/j.1466-8238.2009.00489.x (2010).

    Article  Google Scholar 

  • 40.

    Baker, T. R. et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Change Biol.10, 545–562. https://doi.org/10.1111/j.1365-2486.2004.00751.x (2004).

    ADS  Article  Google Scholar 

  • 41.

    Haripriya, G. S. Estimates of biomass in Indian forests. Biomass Bioenergy19, 245–258. https://doi.org/10.1016/S0961-9534(00)00040-4 (2000).

    Article  Google Scholar 

  • 42.

    Zhao, J. et al. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests. PLoS ONE9, e94966. https://doi.org/10.1371/journal.pone.0094966 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Cairns, M. A., Olmsted, I., Granados, J. & Argaez, J. Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For. Ecol. Manage.186, 125–132. https://doi.org/10.1016/S0378-1127(03)00229-9 (2003).

    Article  Google Scholar 

  • 44.

    Zimudzi, C. & Chapano, C. Diversity, population structure, and above ground biomass in woody species on Ngomakurira Mountain, Domboshawa, Zimbabwe. Int. J. Biodivers. https://doi.org/10.1155/2016/4909158 (2016).

    Article  Google Scholar 

  • 45.

    Abere, F., Belete, Y., Kefalew, A. & Soromessa, T. Carbon stock of Banja forest in Banja district, Amhara region, Ethiopia: An implication for climate change mitigation. J. Sust. For.36, 604–622. https://doi.org/10.1080/10549811.2017.1332646 (2017).

    Article  Google Scholar 

  • 46.

    Sun, W. & Liu, X. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst.7, 4. https://doi.org/10.1186/s40663-019-0210-2 (2020).

    Article  Google Scholar 

  • 47.

    Worldclim. Global climate and weather data. https://www.worldclim.org/ (2019).

  • 48.

    Alvarez-Davila, E. et al. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE12, e0171072. https://doi.org/10.1371/journal.pone.0171072 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Solomon, N., Pabi, O., Annang, T., Asante, I. K. & Birhane, E. The effects of land cover change on carbon stock dynamics in a dry Afromontane forest in northern Ethiopia. Carbon Balance Manage.13, 14. https://doi.org/10.1186/s13021-018-0103-7 (2018).

    CAS  Article  Google Scholar 

  • 50.

    McNicol, I. M., Ryan, C. M., Dexter, K. G., Ball, S. M. J. & Williams, M. Aboveground carbon storage and its links to stand structure, tree diversity and floristic composition in South-Eastern Tanzania. Ecosystems21, 740–754. https://doi.org/10.1007/s10021-017-0180-6 (2018).

    Article  PubMed  Google Scholar 

  • 51.

    Dimobe, K. et al. Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas. Land7, 124. https://doi.org/10.3390/land7040124 (2018).

    Article  Google Scholar 

  • 52.

    Raha, D. et al. Variation in tree biomass and carbon stocks in three tropical dry deciduous forest types of Madhya Pradesh, India. Carbon Manage.11, 109–120. https://doi.org/10.1080/17583004.2020.1712181 (2020).

    CAS  Article  Google Scholar 

  • 53.

    Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr.27, 849–864. https://doi.org/10.1111/geb.12747 (2018).

    Article  Google Scholar 

  • 54.

    Duran, S. M. & Gianoli, E. Carbon stocks in tropical forests decrease with liana diversity. Biol. Lett.9, 20130301. https://doi.org/10.1098/rsbl.2013.0301 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Brown, S., Iverson, L. R., Prasad, A. & Liu, D. Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto. Int.8, 45–59. https://doi.org/10.1080/10106049309354429 (1993).

    Article  Google Scholar 

  • 56.

    Tang, J. W., Yin, J. X., Qi, J. F., Jepsen, M. R. & Lü, X. T. Ecosystem carbon storage of tropical forests over limestone in Xishuangbanna, SW China. J. Trop. For. Sci. 24, 399–407 (2012).

    Google Scholar 

  • 57.

    Slik, J. W. F. et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr.22, 1261–1271. https://doi.org/10.1111/geb.12092 (2013).

    Article  Google Scholar 

  • 58.

    DeWalt, S. J. et al. Biogeographical patterns of liana abundance and diversity. In The Ecology of Lianas (eds Schnitzer, S. A. et al.) 131–146 (Wiley-Blackwell Publishing, Oxford, 2015).

    Google Scholar 

  • 59.

    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For. Ecol. Manage.393, 113–138. https://doi.org/10.1016/j.foreco.2017.01.017 (2017).

    Article  Google Scholar 

  • 60.

    Goodman, R. C. et al. Amazon palm biomass and allometry. For. Ecol. Manage.310, 994–1004. https://doi.org/10.1016/j.foreco.2013.09.045 (2013).

    Article  Google Scholar 

  • 61.

    Petrokofsky, G. et al. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ. Evid.1, 6. https://doi.org/10.1186/2047-2382-1-6 (2012).

    Article  Google Scholar 

  • 62.

    Brown, S. & Lugo, A. E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica14, 161–187. https://doi.org/10.2307/2388024 (1982).

    Article  Google Scholar 

  • 63.

    Pregitzer, K. S. & Euskirchen, E. S. Carbon cycling and storage in world forests: biome patterns related to forest age. Glob. Change Biol.10, 2052–2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x (2004).

    ADS  Article  Google Scholar 

  • 64.

    Pfeifer, M. et al. Deadwood biomass: An underestimated carbon stock in degraded tropical forests?. Environ. Res. Lett.10, 044019. https://doi.org/10.1088/1748-9326/10/4/044019 (2015).

    ADS  CAS  Article  Google Scholar 

  • 65.

    Tran, D. B. & Dargusch, P. Melaleuca forests in Australia have globally significant carbon stocks. For. Ecol. Manage.375, 230–237. https://doi.org/10.1016/j.foreco.2016.05.028 (2016).

    Article  Google Scholar 

  • 66.

    Lü, X. T., Yin, J. X., Jepsen, M. R. & Tang, J. W. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. For. Ecol. Manage.260, 1798–1803. https://doi.org/10.1016/j.foreco.2010.08.024 (2010).

    Article  Google Scholar 

  • 67.

    Yue, J. W. et al. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in northwest China. Peer J.6, e4859. https://doi.org/10.7717/peerj.4859 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 68.

    Palm, C. A., Houghton, R. A., Melillo, J. M. & Skole, D. L. Atmospheric carbon dioxide from deforestation in southeast Asia. Biotropica18, 177–188. https://doi.org/10.2307/2388482 (1986).

    Article  Google Scholar 

  • 69.

    Sreekanth, N. P., Prabha, S. V., Padmakumar, B. & Thomas, A. P. Soil carbon alterations of selected forest types as an environmental feedback to climate change. Int. J. Environ. Sci.3, 1516–1530. https://doi.org/10.6088/ijes.2013030500022 (2013).

    CAS  Article  Google Scholar 

  • 70.

    Shukla, G., Pala, N. A. & Chakravarty, S. Quantification of organic carbon and primary nutrients in litter and soil in a foothill forest plantation of eastern Himalaya. J. For. Res.28, 1195–1202. https://doi.org/10.1007/s11676-017-0394-7 (2017).

    CAS  Article  Google Scholar 

  • 71.

    Ma, L., Shen, C., Lou, D., Fu, S. & Guan, D. Patterns of ecosystem carbon density in edge-affected fengshui forests. Ecol. Eng.107, 216–223. https://doi.org/10.1016/j.ecoleng.2017.07.037 (2017).

    Article  Google Scholar 

  • 72.

    Dar, J. A. & Sundarapandian, S. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India. Environ. Monit. Assess.187, 11. https://doi.org/10.1007/s10661-014-4204-9 (2015).

    CAS  Article  Google Scholar 

  • 73.

    Ngo, K. M. et al. Carbon stocks in primary and secondary tropical forests in Singapore. For. Ecol. Manage.296, 81–89. https://doi.org/10.1016/j.foreco.2013.02.004 (2013).

    Article  Google Scholar 

  • 74.

    Bazezew, M. N., Soromessa, T. & Bayable, E. Carbon stock in Adaba-Dodola community forest of Danaba District, West-Arsi zone of Oromia Region, Ethiopia: An implication for climate change mitigation. J. Ecol. Nat. Environ.7, 14–22. https://doi.org/10.5897/jene2014.0493 (2015).

    Article  Google Scholar 

  • 75.

    Skutsch, M., McCall, K. & Lovett, J. Carbon emissions: Dry forests may be easier to manage. Nature7273, 462. https://doi.org/10.1038/462567b (2009).

    CAS  Article  Google Scholar 

  • 76.

    Corona-Núñez, R. O., Campo, J. & Williams, M. Aboveground carbon storage in tropical dry forest plots in Oaxaca, Mexico. For. Ecol. Manage.409, 202–214. https://doi.org/10.1016/j.foreco.2017.11.014 (2018).

    Article  Google Scholar 

  • 77.

    Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr.33, 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x (2006).

    Article  Google Scholar 

  • 78.

    Fotis, A. T. et al. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J. Ecol.106, 561–570. https://doi.org/10.1111/1365-2745.12847 (2017).

    CAS  Article  Google Scholar 

  • 79.

    Morin, X. Species richness promotes canopy packing: A promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning. Funct. Ecol.29, 993–994. https://doi.org/10.1111/1365-2435.12473 (2015).

    Article  Google Scholar 

  • 80.

    Labriere, N. et al. Spatial congruence between carbon and biodiversity across forest landscapes of northern Borneo. Glob. Ecol. Conserv.6, 105–120. https://doi.org/10.1016/j.gecco.2016.01.005 (2016).

    Article  Google Scholar 

  • 81.

    Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed species forests. Funct. Ecol.29, 1078–1086. https://doi.org/10.1111/1365-2435.12428 (2015).

    Article  Google Scholar 

  • 82.

    Toledo, M. et al. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J. Ecol.100, 253–263. https://doi.org/10.1111/j.1365-2745.2011.01890.x (2012).

    Article  Google Scholar 

  • 83.

    Lugo, A. E. & Brown, S. Tropical forests as sinks of atmospheric carbon. For. Ecol. Manage.54, 239–255. https://doi.org/10.1016/0378-1127(92)90016-3 (1992).

    Article  Google Scholar 

  • 84.

    van der Heijden, G. M. et al. Liana impacts on carbon cycling, storage and sequestration in tropical forests. Biotropica45, 682–692. https://doi.org/10.1111/btp.12060 (2013).

    Article  Google Scholar 

  • 85.

    Nath, A. J., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv.3, 654–663. https://doi.org/10.1016/j.gecco.2015.03.002 (2015).

    Article  Google Scholar 

  • 86.

    Ali, A. et al. Big-sized trees overrule remaining trees’ attributes and species richness as determinants of aboveground biomass in tropical forests. Glob. Change Biol.25, 2810–2824. https://doi.org/10.1111/gcb.14707 (2019).

    ADS  Article  Google Scholar 

  • 87.

    Bastin, J. F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr.27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).

    Article  Google Scholar 

  • 88.

    Allen, K. et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?. Environ. Res. Lett.12, 023001. https://doi.org/10.1088/1748-9326/aa5968 (2017).

    ADS  Article  Google Scholar 

  • 89.

    ENVIS Centre: Tamil Nadu State of Environment and Related Issues. http://tnenvis.nic.in/files/KANYAKUMARI%20%20.pdf (2018).

  • 90.

    Roy, P. S. et al.Biodiversity Characterization at Landscape Level: National Assessment (Indian Institute of Remote Sensing, Dehradun, 2012).

    Google Scholar 

  • 91.

    Sundarapandian, S. M. & Swamy, P. S. Forest ecosystem structure and composition along an altitudinal gradient in the Western Ghats, South India. J. Trop. For. Sci.12, 104–123 (2000).

    Google Scholar 

  • 92.

    Zanne, A. E. et al. Global wood density database. https://hdl.handle.net/10255/dryad.235 (2009).

  • 93.

    Alvarez, E. et al. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manage.267, 297–308. https://doi.org/10.1016/j.foreco.2011.12.013 (2012).

    Article  Google Scholar 

  • 94.

    Phillips, J. et al. Live aboveground carbon stocks in natural forests of Colombia. For. Ecol. Manage.374, 119–128. https://doi.org/10.1016/j.foreco.2016.05.009 (2016).

    Article  Google Scholar 

  • 95.

    Kaushal, R. et al. Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol. Sin.36, 469–476. https://doi.org/10.1016/j.chnaes.2016.07.003 (2016).

    Article  Google Scholar 

  • 96.

    Chaturvedi, R. K., Raghubanshi, A. S. & Singh, J. S. Biomass estimation of dry tropical woody species at juvenile stage. Sci. World J. https://doi.org/10.1100/2012/790219 (2012).

    Article  Google Scholar 

  • 97.

    Schnitzer, S. A., DeWalt, S. J. & Chave, J. Censusing and measuring lianas, a quantitative comparison of the common methods. Biotropica38, 581–591. https://doi.org/10.1111/j.1744-7429.2006.00187.x (2006).

    Article  Google Scholar 

  • 98.

    Cairns, M. A., Brown, S., Helmer, E. H. & Baumgardner, G. A. Root biomass allocation in the world’s upland forests. Oecologia111, 1–11. https://doi.org/10.1007/s004420050201 (1997).

    ADS  Article  PubMed  Google Scholar 

  • 99.

    Ravindranath, N. H. & Ostwald, M. Carbon Inventory Methods, Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects (Springer Science & Business Media, New York, 2008).

    Google Scholar 

  • 100.

    Junior, P. et al. Carbon stocks in a tropical dry forest in Brazil. Rev. Cienc. Agron.47, 32–40. https://doi.org/10.5935/1806-6690.20160004 (2016).

    Article  Google Scholar 

  • 101.

    Coleman, D. C. Soil carbon balance in a successional grassland. Oikos24, 195–199. https://doi.org/10.2307/3543875 (1973).

    CAS  Article  Google Scholar 

  • 102.

    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci.37, 29–38 (1934).

    ADS  CAS  Article  Google Scholar 

  • 103.

    Pearson, T., Walker, S. & Brown, S. Sourcebook for land use, land-use change and forestry projects 29 (Winrock International and the BioCarbon Fund of the World Bank, 2005).

  • 104.

    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. the sp Package. R News5 (2005).

  • 105.

    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package version 3.1-5 (2020).

  • 106.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

  • 107.

    Muthuramkumar, S. et al. Plant community structure in tropical rain forest fragments of the Western Ghats, India. Biotropica38, 143–160 (2006).

    Article  Google Scholar 

  • 108.

    IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. (2011).

  • 109.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron.4 (2001).


  • Source: Ecology - nature.com

    Shrinking deep learning’s carbon footprint

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming