in

Southern Ocean carbon export efficiency in relation to temperature and primary productivity

  • 1.

    Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science305, 367–371 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature427, 56–60 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Devries, T., Primeau, F. & Deutsch, C. The sequestration efficiency of the biological pump. Geophys. Res. Lett.39, 1–5 (2012).

    Google Scholar 

  • 4.

    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature466, 47–55 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Honjo, S. et al. Understanding the role of the biological pump in the global carbon cycle: An imperative for ocean science. Oceanography27, 10–16 (2014).

    Google Scholar 

  • 6.

    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science359, 1139–1143 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Laws, E. A., Falkowski, P. G., Smith, W. O. J., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Global Biogeochem. Cycles14, 1231–1246 (2000).

    ADS  CAS  Google Scholar 

  • 8.

    Dunne, J. P., Armstrong, R. A., Gnnadesikan, A. & Sarmiento, J. L. Empirical and mechanistic models for the particle export ratio. Global Biogeochem. Cycles19, 1–16 (2005).

    Google Scholar 

  • 9.

    Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles21, 1–16 (2007).

    Google Scholar 

  • 10.

    Henson, S. A. et al. A reduced estimate of the strength of the ocean’s biological carbon pump. Geophys. Res. Lett.38, 10–14 (2011).

    Google Scholar 

  • 11.

    Laws, E. A., D’Sa, E. & Naik, P. Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol. Oceanogr. Methods9, 593–601 (2011).

    Google Scholar 

  • 12.

    Maiti, K., Charette, M. A., Buesseler, K. O. & Kahru, M. An inverse relationship between production and export efficiency in the Southern Ocean. Geophys. Res. Lett.40, 1557–1561 (2013).

    ADS  Google Scholar 

  • 13.

    Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycles28, 181–196 (2014).

    ADS  CAS  Google Scholar 

  • 14.

    Britten, G. L., Wakamatsu, L. & Primeau, F. W. The temperature-ballast hypothesis explains carbon export efficiency observations in the Southern Ocean. Geophys. Res. Lett.44, 1831–1838 (2017).

    ADS  Google Scholar 

  • 15.

    Morris, P. J., Sanders, R., Turnewitsch, R. & Thomalla, S. 234Th-derived particulate organic carbon export from an island-induced phytoplankton bloom in the Southern Ocean. Deep. Res. Part II Top. Stud. Oceanogr.54, 2208–2232 (2007).

  • 16.

    Jacquet, S. H. M., Lam, P. J., Trull, T. & Dehairs, F. Carbon export production in the subantarctic zone and polar front zone south of Tasmania. Deep. Res. Part II Top. Stud. Oceanogr.58, 2277–2292 (2011).

  • 17.

    Laurenceau-Cornec, E. C. et al. The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: Insights from free-drifting sediment trap deployments in naturally iron-fertilised waters near the Kerguelen Plateau. Biogeosciences12, 1007–1027 (2015).

    ADS  Google Scholar 

  • 18.

    Planchon, F. et al. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach. Biogeosciences12, 3831–3848 (2015).

    ADS  CAS  Google Scholar 

  • 19.

    Roca-Martí, M. et al. High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean. Deep. Res. PartII(138), 102–115 (2017).

    Google Scholar 

  • 20.

    Henson, S. A., Yool, A. & Sanders, R. Variability in efficiency of particulate organic carbon export: A model study. Global Biogeochem. Cycles29, 33–45 (2015).

    ADS  CAS  Google Scholar 

  • 21.

    Savoye, N., Trull, T. W., Jacquet, S. H. M., Navez, J. & Dehairs, F. 234Th-based export fluxes during a natural iron fertilization experiment in the Southern Ocean (KEOPS). Deep. Res. Part II Top. Stud. Oceanogr.55, 841–855 (2008).

  • 22.

    Puigcorbé, V. et al. Particulate organic carbon export across the Antarctic Circumpolar Current at 10° E : Differences between north and south of the Antarctic Polar Front. Deep. Res. PartII(138), 86–101 (2017).

    Google Scholar 

  • 23.

    Le Moigne, F. A. C. et al. What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?. Geophys. Res. Lett.43, 4457–4466 (2016).

    ADS  Google Scholar 

  • 24.

    Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett.42, 821–830 (2015).

    ADS  CAS  Google Scholar 

  • 25.

    Cavan, E. L., Henson, S. A., Belcher, A. & Sanders, R. Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences14, 177–186 (2017).

    ADS  CAS  Google Scholar 

  • 26.

    Arteaga, L., Haëntjens, N., Boss, E., Johnson, K. S. & Sarmiento, J. L. Assessment of export efficiency equations in the southern ocean applied to satellite-based net primary production. J. Geophys. Res. Ocean.123, 2945–2964 (2018).

    ADS  Google Scholar 

  • 27.

    Cael, B. B., Bisson, K. & Follett, C. L. Can rates of ocean primary production and biological carbon export be related through their probability distributions?. Global Biogeochem. Cycles32, 954–970 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Le Moigne, F. A. C., Pabortsava, K., Marcinko, C. L. J., Martin, P. & Sanders, R. J. Where is mineral ballast important for surface export of particulate organic carbon in the ocean?. Geophys. Res. Lett.41, 8460–8468 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Passow, U. & Rocha, C. L. D. L. Accumulation of mineral ballast on organic aggregates. Global Biogeochem. Cycles20, GB1013 (2006).

    ADS  Google Scholar 

  • 30.

    De La Rocha, C. L., Nowald, N. & Passow, U. Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: Further implications for the ballast hypothesis. Global Biogeochem. Cycles22, 1–10 (2008).

    Google Scholar 

  • 31.

    Fay, A. R. & McKinley, G. A. Global open-ocean biomes: Mean and temporal variability. Earth Syst. Sci. Data6, 273–284 (2014).

    ADS  Google Scholar 

  • 32.

    Lopez-Urrutia, A., Martin, E. S., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl. Acad. Sci.103, 8739–8744 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    Wohlers, J. et al. Changes in biogenic carbon flow in response to sea surface warming. Proc. Natl. Acad. Sci.106, 7067–7072 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Carranza, M. M. et al. When mixed layers are not mixed. Storm-driven mixing and bio-optical vertical gradients in mixed layers of the Southern Ocean. J. Geophys. Res. Ocean.123, 7264–7289 (2018).

  • 35.

    Gregg, W. W. & Casey, N. W. Modeling coccolithophores in the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr.54, 447–477 (2007).

  • 36.

    Rousseaux, C. S. & Gregg, W. W. Recent decadal trends in global phytoplankton composition. Global Biogeochem. Cycles29, 1674–1688 (2015).

    ADS  CAS  Google Scholar 

  • 37.

    Rosengard, S. Z. et al. Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt. Biogeosciences12, 3953–3971 (2015).

    ADS  Google Scholar 

  • 38.

    Buesseler, K. O. The decoupling of production and particle export in the surface ocean. Global Biogeochem. Cycles12, 297–310 (1998).

    ADS  CAS  Google Scholar 

  • 39.

    Ducklow, H. W. et al. Spring-summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012–2014. Philos. Trans. R Soc. A376, 20170177 (2018).

    ADS  Google Scholar 

  • 40.

    Cael, B. B. & Follows, M. J. On the temperature dependence of oceanic carbon efficiency. Geophys. Res. Lett.43, 5170–5175 (2016).

    ADS  Google Scholar 

  • 41.

    Cael, B. B., Bisson, K. & Follows, M. J. How have recent temperature changes affected the efficiency of ocean biological carbon export?. Limnol. Oceanogr. Lett.2, 113–118 (2017).

    Google Scholar 

  • 42.

    Sigman, D. M. & Hain, M. P. The biological productivity of the ocean. Nat. Educ.3, 1–16 (2012).

    Google Scholar 

  • 43.

    Verdy, A. & Mazloff, M. R. A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. Ocean.122, 6968–6988 (2017).

    ADS  CAS  Google Scholar 

  • 44.

    Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C. & Misumi, K. Marine ecosystem dynamics and biogeochemical cycling in the community Earth system model [CESM1 (BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5. J. Clim.26, 9291–9312 (2013).

  • 45.

    Llort, J. et al. Evaluating Southern Ocean carbon eddy-pump from biogeochemical-argo floats. J. Geophys. Res. Ocean.123, 971–984 (2018).

    ADS  Google Scholar 

  • 46.

    Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun.10, 889 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol.40, 2001–2013 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun.5, 3271 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Carlson, C. A. & Hansell, D. A. DOM sources, sinks, reactivity, and budgets. in Biogeochemistry of Marine Dissolved Organic Matter, 2nd Edn. 65–126 (2014).

  • 50.

    Letscher, R. T., Moore, J. K., Teng, Y. & Primeau, F. Variable C:N:P stoichiometry of dissolved organic matter cycling in the community Earth system model. Biogeosciences12, 209–221 (2015).

    ADS  CAS  Google Scholar 

  • 51.

    Roshan, S. & DeVries, T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun.8, 2036 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Schlitzer, R. Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite-based estimates. Deep. Res. Part II Top. Stud. Oceanogr.49, 1623–1644 (2002).

  • 53.

    Nevison, C. et al. Net community production in the Southern Ocean: Insights from comparing atmospheric potential oxygen to satellite ocean color algorithms and ocean models. Geophys. Res. Lett.45, 10549–10559 (2018).

    ADS  CAS  Google Scholar 

  • 54.

    Letscher, R. T. et al. Microbial community composition and nitrogen availability influence DOC remineralization in the South Pacific Gyre. Mar. Chem.177, 325–334 (2015).

    CAS  Google Scholar 

  • 55.

    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature568, 327–335 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 56.

    Dall’Olmo, G., Dingle, J., Polimene, L., Brewin, R. J. W. & Claustre, H. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci.9, 820–823 (2016).

  • 57.

    Stukel, M. R. & Ducklow, H. W. Stirring up the biological pump: Vertical mixing and carbon export in the Southern Ocean. Global Biogeochem. Cycles31, 1420–1434 (2017).

    ADS  CAS  Google Scholar 

  • 58.

    Riley, J. S. et al. The relative contribution of fast and slow sinking particles to ocean carbon export. Global Biogeochem. Cycles26, GB1026 (2012).

    ADS  Google Scholar 

  • 59.

    Baker, C. A. et al. Slow-sinking particulate organic carbon in the Atlantic Ocean: Magnitude, flux, and potential controls. Global Biogeochem. Cycles31, 1051–1065 (2017).

    ADS  CAS  Google Scholar 

  • 60.

    Sweeney, C. et al. Biogeochemical regimes, net community production and carbon export in the Ross Sea, Antarctica. Deep Sea Res.II(47), 3369–3394 (2000).

    ADS  Google Scholar 

  • 61.

    Yager, P. et al. A carbon budget for the Amundsen Sea Polynya, Antarctica: Estimating net community production and export in a highly productive polar ecosystem. Elem. Sci. Anthr.4, 140 (2016).

    Google Scholar 

  • 62.

    Morris, P. J. & Sanders, R. A carbon budget for a naturally iron fertilized bloom in the Southern Ocean. Global Biogeochem. Cycles25, 1–14 (2011).

    Google Scholar 

  • 63.

    Deppeler, S. L. & Davidson, A. T. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci.4, 40 (2017).

    Google Scholar 

  • 64.

    Lemaitre, N. et al. High variability of export fluxes along the North Atlantic GEOTRACES section GA01: Particulate organic carbon export deduced from the 234Th method. Biogeosciences15, 6417–6437 (2018).

    ADS  CAS  Google Scholar 

  • 65.

    Maiti, K. et al. Export fluxes in northern Gulf of Mexico—Comparative evaluation of direct, indirect and satellite-based estimates. Mar. Chem.184, 60–77 (2016).

    CAS  Google Scholar 

  • 66.

    Anand, S. S., Rengarajan, R. & Sarma, V. V. S. S. 234Th-based carbon export flux along the Indian GEOTRACES GI02 section in the Arabian Sea and the Indian Ocean. Global Biogeochem. Cycles32, 417–436 (2018).

    ADS  Google Scholar 

  • 67.

    Kelly, T. B., Kahru, M., Goericke, R., Song, H. & Stukel, M. R. Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection. Deep Sea Res. Part I Oceanogr. Res. Pap.140, 14–25 (2018).

  • 68.

    Treguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci.11, 27–37 (2018).

    ADS  CAS  Google Scholar 

  • 69.

    Palevsky, H. I. & Doney, S. C. How choice of depth horizon influences the estimated spatial patterns and global magnitude of ocean carbon export flux. Geophys. Res. Lett.45, 4171–4179 (2018).

    ADS  Google Scholar 

  • 70.

    Buesseler, K. O. et al. Thorium-234 as a tracer of spatial, temporal and vertical variability in particle flux in the North Pacific. Deep. Res. PartI(56), 1143–1167 (2009).

    Google Scholar 

  • 71.

    Buesseler, K. O., McDonnell, A. M. P., Schofield, O. M. E., Steinberg, D. K. & Ducklow, H. W. High particle export over the continental shelf of the west Antarctic Peninsula. Geophys. Res. Lett.37, 1–5 (2010).

    Google Scholar 

  • 72.

    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr.54, 1210–1232 (2009).

    ADS  CAS  Google Scholar 

  • 73.

    Stange, P. et al. Quantifying the time lag between organic matter production and export in the surface ocean: Implications for estimates of export efficiency. Geophys. Res. Lett.44, 268–276 (2017).

    ADS  CAS  Google Scholar 

  • 74.

    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr.42, 1–20 (1997).

    ADS  CAS  Google Scholar 

  • 75.

    Carr, M.-E. et al. A comparison of global estimates of marine primary production from ocean color. Deep Sea Res. Part II Top. Stud. Oceanogr.53, 741–770 (2006).

  • 76.

    Westberry, T., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem. Cycles22, GB2024 (2008).

    ADS  Google Scholar 

  • 77.

    Rohr, T., Long, M. C., Kavanaugh, M. T., Lindsay, K. & Doney, S. C. Variability in the mechanisms controlling Southern Ocean phytoplankton bloom phenology in an ocean model and satellite observations. Global Biogeochem. Cycles31, 922–940 (2017).

    ADS  CAS  Google Scholar 

  • 78.

    Negrete-garcía, G., Lovenduski, N. S., Hauri, C., Krumhardt, K. M. & Lauvset, S. K. Sudden emergence of a shallow aragonite saturation horizon in the Southern Ocean. Nat. Clim. Chang.9, 313–317 (2019).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Shrinking deep learning’s carbon footprint

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming