in

A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions

  • 1.

    Lamarque, J.-F. et al. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 6247–6294 (2013).

    Google Scholar 

  • 2.

    Galloway, J. N. Anthropogenic mobilization of sulphur and nitrogen: immediate and delayed consequences. Annu. Rev. Energy Env. 21, 261–292 (1996).

    Google Scholar 

  • 3.

    Cowling, E. B. Acid precipitation in historical perspective. Environ. Sci. Technol. 16, 110A–123A (1982).

    Google Scholar 

  • 4.

    Gorham, E. On the acidity and salinity of rain. Geochim. Cosmochim. Acta 7, 231–239 (1955).

    Google Scholar 

  • 5.

    Likens, G. E. & Bormann, F. H. Acid rain: a serious regional environmental problem. Science 184, 1176–1179 (1974).

    Google Scholar 

  • 6.

    Goyer, R. A. et al. Potential human health effects of acid rain: report of a workshop. Environ. Health Perspect. 60, 355–368 (1985).

    Google Scholar 

  • 7.

    Likens, G. E., Driscoll, C. T. & Buso, D. C. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272, 244–246 (1996).

    Google Scholar 

  • 8.

    Johnson, A. H. & Siccama, T. G. Acid deposition and forest decline. Environ. Sci. Technol. 17, 294A–305A (1983).

    Google Scholar 

  • 9.

    Schulze, E.-D. Air pollution and forest decline in a spruce (Picea abies) forest. Science 244, 776–783 (1989).

    Google Scholar 

  • 10.

    Driscoll, C. T. et al. Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects and management strategies. BioScience 51, 180–198 (2001).

    Google Scholar 

  • 11.

    Mitchell, M. J. & Likens, G. E. Watershed sulfur biogeochemistry: shift from atmospheric deposition dominance to climatic regulation. Environ. Sci. Technol. 45, 5267–5271 (2011).

    Google Scholar 

  • 12.

    EPA Air Emissions Data (EPA, accessed 14 April 2020); https://go.nature.com/3fiYt3p

  • 13.

    Klimont, Z., Smith, S. J. & Cofala, J. The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett. 8, 014003 (2013).

    Google Scholar 

  • 14.

    Learn More About Sulphur (The Sulphur Institute, 2020); https://go.nature.com/32OHX87

  • 15.

    China Statistical Yearbook 2017 (National Bureau of Statistics of China, accessed 1 March 2019); https://go.nature.com/2E7z6E2

  • 16.

    Thompson, J. F. Sulfur metabolism in plants. Annu. Rev. Plant Physiol. 18, 59–84 (1967).

    Google Scholar 

  • 17.

    Anderson, J. W. in The Biochemistry of Plants Vol. 16 (ed. Miflin, B. J.) 327–381 (Academic Press, 1990).

  • 18.

    Canfield, D. E. & Raiswell, R. The evolution of the sulfur cycle. Am. J. Sci. 299, 697–723 (1999).

    Google Scholar 

  • 19.

    Jackson, G. D. Effects of nitrogen and sulfur on canola yield and nutrient uptake. Agron. J. 92, 644–649 (2000).

    Google Scholar 

  • 20.

    Ma, B.-L. et al. Growth, yield, and yield components of canola as affected by nitrogen, sulfur, and boron application. J. Plant Nutr. Soil Sci. 178, 658–670 (2015).

    Google Scholar 

  • 21.

    Clark, N., Orloff, S. & Ottman, M. Fertilizing high yielding alfalfa in California and Arizona. Better Crops with Plant Food 101, 21–23 (2017).

    Google Scholar 

  • 22.

    Haneklaus, S., Bloem, E., Schnug, E., de Kok, L. J. & Stulen, I. in Handbook of Plant Nutrition (eds Barker, A. V. & Pilbeam, D. J.) Ch. 7 (CRC Press, 2006).

  • 23.

    Chien, S. H. et al. Agronomic effectiveness of granular nitrogen/phosphorus fertilizers containing elemental sulfur with and without ammonium sulfate: a review. Agron. J. 108, 1203–1213 (2016).

    Google Scholar 

  • 24.

    Dick, W. A., Kost, D. & Chen, L. in Sulfur: A Missing Link Between Soils, Crops, and Nutrition (ed. Jez, J.) Ch. 5 (ASA, CSSA, SSSA, 2008).

  • 25.

    Schnug, E. & Evans, E. J. Monitoring of the sulfur supply of agricultural crops in northern Europe. Phyton 32, 119–122 (1992).

    Google Scholar 

  • 26.

    Gaspar, A. P., Laboski, C. A. M., Naeve, S. L. & Conley, S. P. Secondary and micronutrient uptake, partitioning, and removal across a wide range of soybean seed yield levels. Agron. J. 110, 1328–1338 (2008).

    Google Scholar 

  • 27.

    Fernández, F. G., Ebelhar, S., Greer, K. & Brown, H. Corn response to sulfur in Illinois FREC 2011 Report (FREC, 2012); https://go.nature.com/32PDORh

  • 28.

    Steinke, K., Rutan, J. & Thurgood, L. Corn response to nitrogen at multiple sulfur rates. Agron. J. 107, 1347–1354 (2015).

    Google Scholar 

  • 29.

    Sutradhar, A. K., Kaiser, D. E. & Fernández, F. G. Does total nitrogen/sulfur ratio predict nitrogen or sulfur requirement for corn? Soil Sci. Soc. Am. J. 81, 564–577 (2017).

    Google Scholar 

  • 30.

    Kurbondski, A. J., Kaiser, D. E., Rosen, C. J. & Sutradhar, A. K. Does irrigated corn require multiple applications of sulfur? Soil Sci. Soc. Am. J. 83, 1124–1136 (2019).

    Google Scholar 

  • 31.

    Ketterings, Q. M. et al. Soil and tissue testing for sulfur management of alfalfa in New York State. Soil Sci. Soc. Am. J. 76, 298–306 (2012).

    Google Scholar 

  • 32.

    Haupt, G., Lauzon, J. & Hall, B. Sulfur fertilization: improving alfalfa yield and quality. Crops Soils 48, 26–30 (2015).

    Google Scholar 

  • 33.

    Data and Statistics (USDA NASS, accessed 20 May 2019); https://go.nature.com/3hxxAcK

  • 34.

    California Pesticide Information Portal (CalPIP) (California Department of Pesticide Regulation, accessed 20 May 2019); https://calpip.cdpr.ca.gov/main.cfm

  • 35.

    Orem, W. et al. Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration. Crit. Rev. Environ. Sci. Technol. 41, 249–288 (2011).

    Google Scholar 

  • 36.

    Gabriel, M., Redfield, G. & Rumbold, D. Sulfur as a regional water quality concern in South Florida 2008 South Florida Environmental Report, Appendix 3B-2 (South Florida Water Management District, 2008).

  • 37.

    Shainberg, I. et al. in Advances in Soil Science (ed. Stewart, B. A.) 1–111 (Springer, 1989).

  • 38.

    DeSutter, T. M. & Cihacek, L. J. Potential agricultural uses of flue gas desulfurization gypsum in the Northern Great Plains. Agron. J. 101, 817–825 (2009).

    Google Scholar 

  • 39.

    Ritchey, K. D., Feldhake, C. M., Clark, R. B. & de Sousa, D. M. G. in Agricultural Utilization of Urban and Industrial By-Products Vol. 58 (eds Karlen, D. L. et al.) Ch. 8 (ASA, CSSA, SSSA, 1995).

  • 40.

    Driscoll, C. T., Driscoll, K. M., Fakhraei, H. & Civerolo, K. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmos. Environ. 146, 5–14 (2016).

    Google Scholar 

  • 41.

    Rice, K. C., Scanlon, T. M., Lynch, J. A. & Cosby, B. J. Decreased atmospheric sulfur deposition across the southeastern U.S.: when will watersheds release stored sulfate. Environ. Sci. Technol. 48, 10071–10078 (2014).

    Google Scholar 

  • 42.

    Beaton, J. D. Sulfur requirements of cereals, tree fruits, vegetables, and other crops. Soil Sci. 101, 267–282 (1966).

    Google Scholar 

  • 43.

    Rehm, G. W. & Clapp, J. G. in Sulfur: A Missing Link between Soils, Crops, and Nutrition (ed. Jez, J.) Ch. 9 (ASA, CSSA, SSSA, 2008).

  • 44.

    Kaiser, D. E. & Kim, K.-I. Soybean response to sulfur fertilizer applied as a broadcast or starter using replicated strip trials. Agron. J. 105, 1189–1198 (2013).

    Google Scholar 

  • 45.

    David, M. B., Gentry, L. E. & Mitchell, C. A. Riverine response of sulfate to declining atmospheric sulfur deposition in agricultural watersheds. J. Environ. Qual. 45, 1313–1319 (2016).

    Google Scholar 

  • 46.

    Wine (Agricultural Marketing Resource Center, 2019); https://go.nature.com/2WO6eHl

  • 47.

    Hinckley, E. L. S. & Matson, P. A. Transformations, transport, and potential unintended consequences of high sulfur inputs to Napa Valley vineyards. Proc. Natl Acad. Sci. USA 108, 14005–14010 (2011).

    Google Scholar 

  • 48.

    Williams, J. S. & Cooper, R. M. The oldest fungicide and newest phytoalexin – a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathol. 53, 263–279 (2004).

    Google Scholar 

  • 49.

    Grape Acreage Reports Listing (USDA National Agricultural Statistics Service, accessed 21 May 2019); https://go.nature.com/38pHlXb

  • 50.

    US Drought Portal (NIDIS, accessed 21 May 2019); https://go.nature.com/39pyo0w

  • 51.

    Rice, R. W., Gilbert, R. A. & McCray, J. M. Nutritional requirements for Florida sugarcane Sugarcane Cultural Practices (Sugarcane Handbook), UF-IFAS Extension SS-AGR-228 (Univ. of Florida, 2006).

  • 52.

    McCray, J. M. Elemental sulfur recommendations for sugarcane on Florida organic soils Sugarcane Cultural Practices (Sugarcane Handbook), UF-IFAS Extension SS-AGR-429 (Univ. of Florida, 2019); http://edis.ifas.ufl.edu/ag429

  • 53.

    National Research Council Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014 (The National Academies Press, 2014).

  • 54.

    Schueneman, T. J. Characterization of sulfur sources in the EAA. Annu. Proc. Soil Crop Sci. Soc. Florida 60, 49–52 (2001).

    Google Scholar 

  • 55.

    Lanning, M. et al. Intensified vegetation water use under acid deposition. Sci. Adv. 5, eaav5168 (2019).

    Google Scholar 

  • 56.

    Lu, X. et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proc. Natl Acad. Sci. USA 115, 5187–5192 (2018).

    Google Scholar 

  • 57.

    Podar, M. et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci. Adv. 1, e1500675 (2015).

    Google Scholar 

  • 58.

    Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).

    Google Scholar 

  • 59.

    Schmeltz, D. et al. MercNet: a national monitoring network to assess responses to changing mercury emissions in the United States. Ecotoxicology 20, 1713–1725 (2011).

    Google Scholar 

  • 60.

    US Environmental Protection Agency 2011 National Listing of Fisheries Advisories EPA-820-F-13-058 (EPA, 2013).

  • 61.

    Gilmour, C. C. et al. Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry 40, 327–345 (1998).

    Google Scholar 

  • 62.

    Bailey, L. T. et al. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments. Sci. Total Environ. 580, 1197–1204 (2017).

    Google Scholar 

  • 63.

    Wasik, J. K. C. et al. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland. J. Geophys. Res. Biogeosciences 120, 1697–1715 (2015).

    Google Scholar 

  • 64.

    Benoit, J. M. et al. in Biogeochemistry of Environmentally Important Trace Elements (eds Cai, Y. & Braids, O. C.) 262–297 (ACS, 2002).

  • 65.

    Chen, C. Y., Driscoll, C. T. & Kamman, N. C. in Mercury in the Environment: Pattern and Process (ed. Bank, M.) 143–166 (Univ. of California Press, 2012).

  • 66.

    Robinson, A., Richey, A., Slotton, D., Collins, J. & Davis, J. North Bay Mercury Biosentinel Project 2016–2017 Contribution # 868 (San Francisco Estuary Institute, Aquatic Science Center, 2018).

  • 67.

    Marvin-DiPasquale, M., Agee, J. L., Bouse, R. M. & Jaffe, B. E. Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California. Environ. Geol. 43, 260–267 (2003).

    Google Scholar 

  • 68.

    Wiener, J. G., Evers, D. C., Gay, D. A., Morrison, H. A. & Williams, K. A. Mercury contamination in the Laurentian Great Lakes region: introduction and overview. Environ. Pollut. 161, 243–251 (2012).

    Google Scholar 

  • 69.

    Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., Van Dervelde, G. & Roelofs, J. G. M. Internal eutrophication: how it works and what to do about it–a review. Chem. Ecol. 22, 93–111 (2006).

    Google Scholar 

  • 70.

    Caraco, N. F., Cole, J. J. & Likens, G. E. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341, 316–318 (1989).

    Google Scholar 

  • 71.

    Smolders, A. J. P., Lucassen, E. C. H. E. T., Bobbink, R., Roelofs, J. G. M. & Lamers, L. P. M. How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry 98, 1–7 (2010).

    Google Scholar 

  • 72.

    van der Welle, M. E. W., Roelofs, J. G. M. & Lamers, L. P. M. Multi-level effects of sulphur–iron interactions in freshwater wetlands in The Netherlands. Sci. Total Environ. 406, 426–429 (2008).

    Google Scholar 

  • 73.

    De Kok, L. J., Durenkamp, M., Yang, L. & Stulen, I. in Sulfur in Plants, An Ecological Perspective (eds Hawkesford, M. J. & De Kok, L. J.) Ch. 5 (Springer, 2007).

  • 74.

    Lamers, L. P. M. et al. Sulfide as a soil phytotoxin—a review. Front. Plant Sci. 4, 268 (2013).

    Google Scholar 

  • 75.

    Koch, M. S., Mendelssohn, I. A. & McKee, K. L. Mechanism for the hydrogen sulfide‐induced growth limitation in wetland macrophytes. Limnol. Oceanogr. 35, 399–408 (1990).

    Google Scholar 

  • 76.

    Gao, S., Tanji, K. K. & Scardaci, S. C. Impact of rice straw incorporation on soil redox status and sulfide toxicity. Agron. J. 96, 70–76 (2004).

    Google Scholar 

  • 77.

    Lamers, L. P. M., Tomassen, H. B. M. & Roelofs, J. G. M. Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ. Sci. Technol. 32, 199–205 (1998).

    Google Scholar 

  • 78.

    Li, S., Mendelssohn, I. A., Chen, H. & Orem, W. H. Does sulphate enrichment promote the expansion of Typha domingensis (cattail) in the Florida Everglades? Freshw. Biol. 54, 1909–1923 (2009).

    Google Scholar 

  • 79.

    Ye, M., Beach, J., Martin, J. & Senthilselvan, A. Occupational pesticide exposures and respiratory health. Int. J. Environ. Res. Public Health 10, 6442–6471 (2013).

    Google Scholar 

  • 80.

    Hoppin, J. A., Umbach, D. M., London, S. J., Alavanja, M. C. R. & Sandler, D. P. Chemical predictors of wheeze among farmer pesticide applicators in the Agricultural Health Study. Am. J. Respir. Crit. Care Med. 165, 683–689 (2002).

    Google Scholar 

  • 81.

    Degryse, F., Ajiboye, B., Baird, R., da Silva, R. C. & McLaughlin, M. J. Oxidation of elemental sulfur in granular fertilizers depends on the soil-exposed surface area. Soil Sci. Soc. Am. J. 80, 294–305 (2016).

    Google Scholar 

  • 82.

    Guo, J. H. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010 (2010).

    Google Scholar 

  • 83.

    Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).

    Google Scholar 

  • 84.

    Galloway, J. N. et al. The nitrogen cascade. BioScience 53, 341–356 (2003).

    Google Scholar 


  • Source: Ecology - nature.com

    Shrinking deep learning’s carbon footprint

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming