in

Repeatable ecological dynamics govern the response of experimental communities to antibiotic pulse perturbation

  • 1.

    Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009).

    PubMed  Google Scholar 

  • 2.

    Rockstrom, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    PubMed  Google Scholar 

  • 3.

    Morley, V. J., Woods, R. J. & Read, A. F. Bystander selection for antimicrobial resistance: implications for patient health. Trends Microbiol. 27, 864–877 (2019).

    CAS  PubMed  Google Scholar 

  • 4.

    Vrancken, G., Gregory, A. C., Huys, G. R. B., Faust, K. & Raes, J. Synthetic ecology of the human gut microbiota. Nat. Rev. Microbiol. 17, 754–763 (2019).

    CAS  PubMed  Google Scholar 

  • 5.

    Lässig, M., Mustonen, V. & Walczak, A. M. Predicting evolution. Nat. Ecol. Evol. 1, 0077 (2017).

    Google Scholar 

  • 6.

    Robinson, J. I. et al. Metabolomic networks connect host-microbiome processes to human Clostridioides difficile infections. J. Clin. Invest. 130, 3792–3806 (2019).

    Google Scholar 

  • 7.

    Oh, S., Choi, D. & Cha, C. J. Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan. Sci. Rep. 9, 4598 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Zorner, P., Farmer, S. & Alibek, K. Quantifying crop rhizosphere microbiome ecology: the next frontier in enhancing the commercial utility of agricultural microbes. Ind. Biotechnol. 14, 116–119 (2018).

    Google Scholar 

  • 9.

    Lozada-Gobilard, S. et al. Environmental filtering predicts plant-community trait distribution and diversity: kettle holes as models of meta-community systems. Ecol. Evol. 9, 1898–1910 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Li, J. et al. Shared molecular targets confer resistance over short and long evolutionary timescales. Mol. Biol. Evol. 36, 691–708 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Vázquez-García, I. et al. Clonal heterogeneity influences the fate of new adaptive mutations. Cell Rep. 21, 732–744 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Illingworth, C. J. R., Parts, L., Schiffels, S., Liti, G. & Mustonen, V. Quantifying selection acting on a complex trait using allele frequency time series data. Mol. Biol. Evol. 29, 1187–1197 (2012).

    CAS  PubMed  Google Scholar 

  • 13.

    Leibler, S. & Kussell, E. Individual histories and selection in heterogeneous populations. Proc. Natl Acad. Sci. USA 107, 13183–13188 (2010).

    CAS  PubMed  Google Scholar 

  • 14.

    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).

    PubMed  Google Scholar 

  • 15.

    Wistrand-Yuen, E. et al. Evolution of high-level resistance during low-level antibiotic exposure. Nat. Commun. 9, 1599 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).

    CAS  PubMed  Google Scholar 

  • 17.

    Scheuerl, T. et al. Bacterial adaptation is constrained in complex communities. Nat. Commun. 11, 754 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Roodgar, M. et al. Longitudinal linked read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment. Preprint at bioRxiv https://doi.org/10.1101/2019.12.21.886093 (2019).

  • 19.

    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).

    CAS  PubMed  Google Scholar 

  • 20.

    Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

    CAS  PubMed  Google Scholar 

  • 21.

    Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Mack, I. et al. Antimicrobial resistance following azithromycin mass drug administration: potential surveillance strategies to assess public health impact. Clin. Infect. Dis. 70, 1501–1508 (2019).

    Google Scholar 

  • 24.

    Tamburini, S., Shen, N., Wu, H. C. & Clemente, J. C. The microbiome in early life: implications for health outcomes. Nat. Med. 22, 713–722 (2016).

    CAS  PubMed  Google Scholar 

  • 25.

    Langdon, A., Crook, N. & Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 8, 39 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Brown, J. H. & Kodricbrown, A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449 (1977).

    Google Scholar 

  • 27.

    Patel, R. & DuPont, H. L. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin. Infect. Dis. 60, 108–121 (2015).

    Google Scholar 

  • 28.

    Lawley, T. D. et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002995 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Ingrisch, J. & Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259 (2018).

    PubMed  Google Scholar 

  • 30.

    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Trindade, S., Sousa, A. & Gordo, I. Antibiotic resistance and stress in the light of Fisher’s model. Evolution 66, 3815–3824 (2012).

    PubMed  Google Scholar 

  • 32.

    Jasinska, W. et al. Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution. Nat. Ecol. Evol. 4, 437–452 (2020).

    PubMed  Google Scholar 

  • 33.

    Springer, B. et al. Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob. Agents Chemother. 45, 2877–2884 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Nishimura, K., Hosaka, T., Tokuyama, S., Okamoto, S. & Ochi, K. Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). J. Bacteriol. 189, 3876–3883 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Macfarlane, E. L. A., Kwasnicka, A. & Hancock, R. E. W. Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146, 2543–2554 (2000).

    CAS  PubMed  Google Scholar 

  • 36.

    Girgis, H. S., Hottes, A. K. & Tavazoie, S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS ONE 4, e5629 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Liu, Y., Chen, X., Pan, L. & Mao, Z. Differential protein expression of a streptomycin-resistant Streptomyces albulus mutant in high yield production of ε-poly-l-lysine: a proteomics study. RSC Adv. 9, 24092–24104 (2019).

    CAS  Google Scholar 

  • 38.

    Beardmore, R. E. et al. Drug-mediated metabolic tipping between antibiotic resistant states in a mixed-species community. Nat. Ecol. Evol. 2, 1312–1320 (2018).

    PubMed  Google Scholar 

  • 39.

    Perron, G. G., Gonzalez, A. & Buckling, A. The rate of environmental change drives adaptation to an antibiotic sink. J. Evol. Biol. 21, 1724–1731 (2008).

    CAS  PubMed  Google Scholar 

  • 40.

    Retel, C. et al. The feedback between selection and demography shapes genomic diversity during coevolution. Sci. Adv. 5, eaax0530 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Day, T., Huijben, V. & Read, A. F. Is selection relevant in the evolutionary emergence of drug resistance? Trends Microbiol. 23, 126–133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).

    PubMed  Google Scholar 

  • 43.

    Wein, T. et al. Carrying capacity and colonization dynamics of Curvibacter in the Hydra host habitat. Front. Microbiol. 9, 443 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Zhou, J. et al. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. mBio 4, e00584-12 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Waples, R. S., Beechie, T. & Pess, G. R. Evolutionary history, habitat disturbance regimes, and anthropogenic changes: what do these mean for resilience of Pacific salmon populations? Ecol. Soc. 14, 3 (2009).

    Google Scholar 

  • 48.

    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).

    Google Scholar 

  • 49.

    Cairns, J. et al. Construction and characterization of synthetic bacterial community for experimental ecology and evolution. Front. Genet. 9, 312 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Datta, N., Hedges, R. W., Shaw, E. J., Sykes, R. B. & Richmond, M. H. Properties of an R factor from Pseudomonas aeruginosa. J. Bacteriol. 108, 1244–1249 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Cairns, J. et al. Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Commun. Biol. 1, 35 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina paired-end read merger. Bioinformatics 30, 614–620 (2014).

    CAS  PubMed  Google Scholar 

  • 53.

    Martin, M. & Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  • 54.

    Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS  PubMed  Google Scholar 

  • 56.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Edgar, R. C. Accuracy of microbial community diversity estimated by closed- and open-reference OTUs. PeerJ 5, e3889 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Garrison, E. & Gabor, M. Haplotype-based variant detection from short-read sequencing. Preprint at arXiv https://arxiv.org/abs/1207.3907 (2012).

  • 62.

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6, 80–92 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); http://www.R-project.org/

  • 64.

    Krijthe, J. Rtsne: T-distributed stochastic neighbor embedding using a Barnes-Hut implementation. R package version 0.15 https://github.com/jkrijthe/Rtsne (2015).

  • 65.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 66.

    Kuhn, M. et al. caret: Classification and regression training. R package version 6.0-84 https://CRAN.R-project.org/package=caret (2019).

  • 67.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: Linear and nonlinear mixed effects models. R package version 3.1-142 https://CRAN.R-project.org/package=nlme (2019).

  • 68.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics With S 4th edn (Springer, 2002)

  • 69.

    Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-6 https://CRAN.R-project.org/package=vegan (2019).

  • 70.

    Zapala, M. A. & Schork, N. J. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl Acad. Sci. USA 103, 19430–19435 (2006).

    CAS  PubMed  Google Scholar 

  • 71.

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    PubMed  Google Scholar 

  • 73.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 


  • Source: Ecology - nature.com

    Shrinking deep learning’s carbon footprint

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming