in

Chemical profile and phytotoxic action of Onopordum acanthium essential oil

  • 1.

    Rother, C. Administration of Cardiodoron® in patients with functional cardiovascular disorders and/or sleep disorder-results of a prospective, non-interventional study. Forsch. Komplementmed.20, 334–344 (2013).

    PubMed  Google Scholar 

  • 2.

    Cavers, P. B., Qaderi, M. M., Threadgill, P. F. & Steel, M. G. The biology of Canadian weeds. 147. Onopordum acanthium L. Can. J. Plant Sci.91, 739–758 (2011).

    Google Scholar 

  • 3.

    An et al. Flora of Xinjiangensis. Volume 5: Asteraceae.5, 334–336 (1999).

  • 4.

    Mucina, L. Syntaxonomy of the Onopordum acanthium communities in temperate and continental Europe. Vegetatio81, 107–115 (1989).

    Google Scholar 

  • 5.

    Zahed, N., Hosni, K., Brahim, N. B., Kallel, M. & Sebei, H. Allelopathic effect of Schinus molle essential oils on wheat germination. Acta Physiol. Plant.32, 1221–1227 (2010).

    CAS  Google Scholar 

  • 6.

    Abusamra, Y. A. K. et al. Evaluation of putative cytotoxic activity of crude extracts from Onopordum acanthium leaves and Spartium junceum flowers against the U-373 glioblastoma cell line. Pak. J. Pharm. Sci.28, 1225–1232 (2015).

    PubMed  Google Scholar 

  • 7.

    Csupor-Löffler, B., Zupkó, I., Molnár, J., Forgo, P. & Hohmann, J. Bioactivity-guided isolation of antiproliferative compounds from the roots of Onopordum acanthium. Nat. Prod. Commun.9, 337–340 (2014).

    PubMed  Google Scholar 

  • 8.

    Daci, A., Gold-Binder, M., Garzon, D., Patea, A. & Beretta, G. Standardization of solvent extracts from Onopordum acanthium fruits by GC-MS, HPLC-UV/DAD, HPLC-TQMS and 1H-NMR and evaluation of their inhibitory effects on the expression of IL-8 and e-selectin in immortalized endothelial cells (HUVECtert). Nat. Prod. Commun.9, 945–948 (2014).

    CAS  PubMed  Google Scholar 

  • 9.

    Lajter, I. et al. Anti-inflammatory activity of Onopordum acanthium extracts and isolated compounds. Planta Med.80, 255 (2014).

    Google Scholar 

  • 10.

    Réthy, B. et al. Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part I. Phytother. Res.21, 1200–1208 (2007).

    PubMed  Google Scholar 

  • 11.

    Shao, H. et al. Chemical composition and phytotoxic activity of Seriphidiumterrae-albae (Krasch.) Poljakov (Compositae) essential oil. Chem. Biodivers.15, e1800348 (2018).

    PubMed  Google Scholar 

  • 12.

    Tsuneki, H. et al. Antiangiogenic activity of β-eudesmol in vitro and in vivo. Eur. J. Pharmacol.512, 105–115 (2005).

    CAS  PubMed  Google Scholar 

  • 13.

    Garsiya, E. R., Konovalov, D. A., Shamilov, A. A., Glushko, M. P. & Orynbasarova, K. K. Traditional medicine plant, Onopordumacanthium L. (Asteraceae): chemical composition and pharmacological research. Plants.8(2), 40 (2019).

    CAS  PubMed Central  Google Scholar 

  • 14.

    Wei, C. et al. Chemical composition and allelopathic, phytotoxic and pesticidal activities of Atriplexcana LEDEB. (Amaranthaceae) essential oil. Chem. Biodivers. https://doi.org/10.1002/cbdv.201800595 (2019).

    Article  PubMed  Google Scholar 

  • 15.

    Brutti, C. B., Pardo, M. F., Caffini, N. O. & Natalucci, C. L. Onopordumacanthium L. (Asteraceae) flowers as coagulating agent for cheesemaking. LWT Food Sci. Technol.45, 172–179 (2012).

    CAS  Google Scholar 

  • 16.

    Fernald, M. L., Kinsey, A. C. & Rollins, R. C. Edible Wild Plants of Eastern North America (Courier Corporation, Chelmsford, 1996).

    Google Scholar 

  • 17.

    Arfaoui, M. O., Renaud, J., Ghazghazi, H., Boukhchina, S. & Mayer, P. Variation in oil content, fatty acid and phytosterols profile of Onopordum acanthium L. during seed development. Nat. Prod. Res.28, 2293–2300 (2014).

    CAS  PubMed  Google Scholar 

  • 18.

    Gerçel, H. F. The effects of different catalysts on the pyrolysis of thistle, Onopordum acanthium L. Energy Sources35, 791–799 (2013).

    Google Scholar 

  • 19.

    Matthaus, B., Ozcan, M. M. & Al-Juhaimi, F. Fatty acid, tocopherol, and mineral contents of Onopordum acanthium seed and oil. Chem. Nat. Compd.50, 1092–1093 (2014).

    CAS  Google Scholar 

  • 20.

    Verdeguer, M. et al. Herbicidal activity of Peumus boldus and Drimys winterii essential oils from Chile. Molecules16, 403–411 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    El Ayeb-Zakhama, A. et al. Chemical composition and allelopathic potential of essential oils from Citharexylumspinosum L. grown in Tunisia. Chem. Biodivers. https://doi.org/10.1002/cbdv.201600225 (2017).

    Article  PubMed  Google Scholar 

  • 22.

    De, J., Lu, Y., Ling, L., Peng, N. & Zhong, Y. Essential oil composition and bioactivities of Waldheimia glabra (Asteraceae) from Qinghai-Tibet plateau. Molecules22, 460–466 (2017).

    PubMed Central  Google Scholar 

  • 23.

    Gilani, S. A., Fujii, Y., Sugano, M. & Watanabe, K. N. Chemotypic variations and phytotoxic studies of essential oils of endemic medicinal plant, Seriphidium kurramense, from Pakistan. J. Med. Plants Res.4, 309–315 (2010).

    CAS  Google Scholar 

  • 24.

    Gruľová, D. et al. Composition and bioactivity of essential oils of Solidago spp. and their impact on radish and garden cress. Allelopathy J39, 129–142 (2016).

    Google Scholar 

  • 25.

    Kaur, S., Singh, H. P., Mittal, S., Batish, D. R. & Kohli, R. K. Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Ind. Crops Prod.32, 54–61 (2010).

    CAS  Google Scholar 

  • 26.

    Bouazzi, S. et al. Chemical composition and antioxidant activity of essential oils and hexane extract of Onopordumarenarium from Tunisia. J. Chromatogr. Sci.58, 287–293 (2020).

    PubMed  Google Scholar 

  • 27.

    Polatoğlu, K., Demirci, B. & Başer, K. H. C. High amounts of n-alkanes in the composition of Asphodelusaestivus Brot. flower essential oil from Cyprus. J. Oleo Sci.65, 867–870 (2016).

    PubMed  Google Scholar 

  • 28.

    Lazari, D. M., Skaltsa, H. D. & Constantinidis, T. Volatile constituents of Centaurearaphanina Sm. Subsp. mixta (DC.) Runemark and C. spruneri Boiss. & Heldr. (Asteraceae), growing wild in Greece. Flavour. Frag. J.14, 415–418 (1999).

    CAS  Google Scholar 

  • 29.

    Klocke, J. A., Balandrin, M. F., Adams, R. P. & Kingsford, E. Insecticidal chromenes from the volatile oil of Hemizonia fitchii. J. Chem. Ecol.11, 701–712 (1985).

    CAS  PubMed  Google Scholar 

  • 30.

    Heinrich, G., Pfeifhofer, H. W., Stabentheiner, E. & Sawidis, T. Glandular hairs of Sigesbeckia jorullensis Kunth (Asteraceae): morphology, histochemistry and composition of essential oil. Ann. Bot.89, 459–469 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    El Ayeb-Zakhama, A. et al. Chemical composition and allelopathic potential of essential oils from Tipuanatipu (Benth.) Kuntze cultivated in Tunisia. Chem. Biodivers.13, 309–318 (2016).

    CAS  PubMed  Google Scholar 

  • 32.

    Guleria, S. et al. Chemical composition, antioxidant activity and inhibitory effects of essential oil of Eucalyptus teretecornis grown in north-western Himalaya against Alternaria alternata. J. Plant Biochem. Biotechnol.21, 44–50 (2012).

    CAS  Google Scholar 

  • 33.

    Miyazawa, M., Shimamura, H., Nakamura, S. I. & Kameoka, H. Antimutagenic activity of (+)-β-eudesmol and paeonol from Dioscorea japonica. J. Agric. Food Chem.44, 1647–1650 (1996).

    CAS  Google Scholar 

  • 34.

    Plengsuriyakarn, T., Karbwang, J. & Na-Bangchang, K. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of β-eudesmol in human cholangiocarcinoma xenografted nude mouse model. Clin. Exp. Pharmacol. Physiol.42, 293–304 (2015).

    CAS  PubMed  Google Scholar 

  • 35.

    Ul’chenko, N. T., Gusakova, S. D. & Glishenkova, A. I. Oxygenated triacylglycerols of the lipids of Onopordum acanthium seeds. Chem. Nat. Compd.29, 578–581 (1993).

    Google Scholar 

  • 36.

    Watanabe, Y. et al. Phytotoxic potential of Onopordumacanthium L. (Asteraceae). Chem. Biodivers.11, 1247–1255 (2014).

    CAS  PubMed  Google Scholar 

  • 37.

    Çakır, A. et al. Phytotoxic and insecticidal properties of essential oils and extracts of four Achillea species. Rec. Nat. Prod.10, 154–167 (2015).

    Google Scholar 

  • 38.

    Mancini, E., De Martino, L., Marandino, A., Scognamiglio, M. R. & De Feo, V. Chemical composition and possible in vitro phytotoxic activity of Helichrsyumitalicum (Roth) Don ssp. italicum. Molecules16, 7725–7735 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Rammohan, A., Reddy, G. M., Bhaskar, B. V., Gunasekar, D. & Zyryanov, G. V. Phytochemistry and pharmacological activities of the genus Rhynchosia: a comprehensive review. Planta251, 9 (2020).

    CAS  Google Scholar 

  • 40.

    Martino, L. D., Mancini, E., Almeida, L. F. R. D. & Feo, V. D. The antigerminative activity of twenty-seven monoterpenes. Molecules15, 6630–6637 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Zhou, S. et al. Chemical composition, phytotoxic, antimicrobial and insecticidal activity of the essential oils of Dracocephalum integrifolium. Toxins11, 598 (2019).

    CAS  PubMed Central  Google Scholar 

  • 42.

    Ahuja, N., Batish, D. R., Singh, H. P. & Kohli, R. K. Herbicidal activity of eugenol towards some grassy and broad-leaved weeds. J. Pest Sci.88(1), 209–218 (2015).

    Google Scholar 

  • 43.

    Grayson, B. T. et al. The physical and chemical properties of the herbicide cinmethylin (SD 95481). Pestic. Sci.21, 143–153 (1987).

    CAS  Google Scholar 

  • 44.

    Qaderi, M. M., Cavers, P. B. & Bernards, M. A. Isolation and structural characterization of a water-soluble germination inhibitor from Scotch thistle (Onopordum acanthium) cypselas. J. Chem. Ecol.29, 2425–2438 (2003).

    CAS  PubMed  Google Scholar 

  • 45.

    Young, J. A. & Evans, R. A. Control and ecological studies of scotch thistle. Weed Sci.17, 60–63 (1969).

    Google Scholar 

  • 46.

    Sharifi, N. et al. Isolation, identification and molecular docking studies of a new isolated compound, from Onopordon acanthium: a novel angiotensin converting enzyme (ACE) inhibitor. J. Ethnopharmacol.148, 934–939 (2013).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming

    MIT researchers and Wyoming representatives explore energy and climate solutions