in

Population genetic variation characterization of the boreal tree Acer ginnala in Northern China

  • 1.

    Sreekanth, P. M., Balasundaran, M., Nazeem, P. A. & Suma, T. B. Genetic diversity of nine natural Tectona grandis L.f. populations of the Western Ghats in Southern India. Conserv. Genet.13, 1409–1419. https://doi.org/10.1007/s10592-012-0383-5 (2012).

    Article  Google Scholar 

  • 2.

    Zhang, Y., Zhang, X., Chen, X., Sun, W. & Li, J. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers. Hereditas155, 22. https://doi.org/10.1186/s41065-018-0058-4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Yang, S., Xue, S., Kang, W., Qian, Z. & Yi, Z. Genetic diversity and population structure of Miscanthus lutarioriparius, an endemic plant of China. PLoS ONE14, e0211471–e0211471. https://doi.org/10.1371/journal.pone.0211471 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Abebe, T. D., Bauer, A. M. & Léon, J. Morphological diversity of Ethiopian barleys (Hordeum vulgare L.) in relation to geographic regions and altitudes. Hereditas147, 154–164. https://doi.org/10.1111/j.1601-5223.2010.02173.x (2010).

    Article  PubMed  Google Scholar 

  • 5.

    Rinaldi, R. et al. The influence of a relict distribution on genetic structure and variation in the Mediterranean tree, Platanus orientalis. AoB Plants https://doi.org/10.1093/aobpla/plz002 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Goudarzi, F. et al. Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser’s spotted newt (Neurergus kaiseri). Sci. Rep.9, 6239. https://doi.org/10.1038/s41598-019-41886-8 (2019).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 7.

    Tóth, E. G., Tremblay, F., Housset, J. M., Bergeron, Y. & Carcaillet, C. Geographic isolation and climatic variability contribute to genetic differentiation in fragmented populations of the long-lived subalpine conifer Pinus cembra L. in the western Alps. BMC Evol. Biol.19, 190. https://doi.org/10.1186/s12862-019-1510-4 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv.5, eaay9969. https://doi.org/10.1126/sciadv.aay9969 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 9.

    Hamilton, J. A., Royauté, R., Wright, J. W., Hodgskiss, P. & Ledig, F. T. Genetic conservation and management of the California endemic, Torrey pine (Pinus torreyana Parry): Implications of genetic rescue in a genetically depauperate species. Ecol. Evol.7, 7370–7381. https://doi.org/10.1002/ece3.3306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley, New York, 2009).

    Google Scholar 

  • 11.

    Cohen, J. I., Williams, J. T., Plucknett, D. L. & Shands, H. Ex situ conservation of plant genetic resources: global development and environmental concerns. Science253, 866–872. https://doi.org/10.1126/science.253.5022.866 (1991).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 12.

    Li, M., Zhao, Z., Miao, X. & Zhou, J. Genetic diversity and population structure of Siberian apricot (Prunus sibirica L.) in China. Int. J. Mol. Sci.15, 377–400. https://doi.org/10.3390/ijms15010377 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Bao, W. et al. Genetic diversity and population structure of Prunus mira (Koehne) from the Tibet plateau in China and recommended conservation strategies. PLoS ONE12, e0188685–e0188685. https://doi.org/10.1371/journal.pone.0188685 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Zhang, X. Vegetation Regionalization Map of China (Geological Publishing House, Beijing, 2007).

    Google Scholar 

  • 15.

    Huang, D., Wang, J. & Li, D. Biological characteristics and planting technology of Acer ginnala Maxim. Mod. Agric. Sci.16, 112–113 (2009).

    Google Scholar 

  • 16.

    Tian, X., Jin, Q., Li, D., Wei, Z. & Xu, T. Pollen morphology of Aceraceae and its systematic implication. Acta Bot. Yunnanica23, 457–465 (2001).

    Google Scholar 

  • 17.

    Zhou, Y. et al. Inhibiting effects of 3 antioxidants on contamination and browning of tissue culture of Acer ginnala Maxim. Acta Agric. Shanghai23, 5–7 (2007).

    Google Scholar 

  • 18.

    Li, H. Y., Song, J. Y., Dong, J. & Zhan, Y. G. Establishment of callus regeneration system for Acer ginnala maxim and determination of gallic acid in callus. Chin. Bull. Bot.25, 212–219 (2008).

    CAS  Google Scholar 

  • 19.

    Wang, R. B., Wang, C. Q., Liu, X. L. & Li, L. H. Advances in the research of chemical constituents and medicine and edible function of Acer ginnala. J. Anhui Agric. Sci.39, 5387–5388+5517 (2011).

  • 20.

    Xie, Y. F., Li, Q., Zou, H. & Yuan, H. L. Analysis of polyphenols from the leaves of Acer ginnala Maxim by reversed-phase high performance liquid chromatography. J. Anal. Sci.27, 443–446 (2011).

    CAS  Article  Google Scholar 

  • 21.

    Dong, J., Zhan, Y. & Ren, J. Kinetics in suspension culture of Acer ginnala. Sci. Silvae Sin.48, 18–23 (2012).

    CAS  Google Scholar 

  • 22.

    Park, K. H. et al. Antioxidative and anti-inflammatory activities of galloyl derivatives and antidiabetic activities of Acer ginnala. Evid. Based Complement Altern. Med.2017, 6945912. https://doi.org/10.1155/2017/6945912 (2017).

    Article  Google Scholar 

  • 23.

    Ma, Z. H., Zhang, M. S., Ma, C. E. & Hao, Y. H. Key points of cultivation technology of special economic forest of Acer ginnala. Spec. Econ. Anim. Plant5, 22 (2005).

  • 24.

    Wang, D., Pang, C. H., Gao, Y. H., Hao, X. J. & Wang, Y. L. Phenotypic diversity of Acer ginnala (Aceraceae) populations at different altitude. Acta Bot. Yunnanica32, 117–125 (2010).

    CAS  Article  Google Scholar 

  • 25.

    Yan, N., Wang, D., Gao, Y. H., Hao, X. J. & Wang, Y. L. Genetic diversity of Acer ginnala populations at different elevation in Qiliyu based on ISSR markers. Sci. Silvae Sin.46, 50–56 (2010).

    Google Scholar 

  • 26.

    Chiang, T. Y. et al. Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS ONE https://doi.org/10.1371/journal.pone.0211342 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Zane, L., Bargelloni, L. & Patarnello, T. Strategies for microsatellite isolation: a review. Mol. Ecol.11, 1–16. https://doi.org/10.1046/j.0962-1083.2001.01418.x (2002).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Geng, Q. et al. Understanding population structure and historical demography of Litsea auriculata (Lauraceae), an endangered species in east China. Sci. Rep.7, 17343. https://doi.org/10.1038/s41598-017-16917-x (2017).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 29.

    Abdul-Muneer, P. M. Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet. Res. Int.2014, 691759. https://doi.org/10.1155/2014/691759 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Li, G. & Quiros, C. F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet.103, 455–461. https://doi.org/10.1007/s001220100570 (2001).

    CAS  Article  Google Scholar 

  • 31.

    Ferriol, M., Picó, B. & Nuez, F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet.107, 271–282. https://doi.org/10.1007/s00122-003-1242-z (2003).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Budak, H. et al. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor. Appl. Genet.108, 328–334. https://doi.org/10.1007/s00122-003-1428-4 (2004).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 33.

    Masmoudi, M. B. et al. Contrasted levels of genetic diversity in a benthic Mediterranean octocoral: consequences of different demographic histories?. Ecol. Evol.6, 8665–8678. https://doi.org/10.1002/ece3.2490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Li, X. et al. De novo transcriptome assembly and population genetic analyses for an endangered Chinese endemic Acer miaotaiense (Aceraceae). Genes9, 378 (2018).

    Article  Google Scholar 

  • 35.

    Goudet, J. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered.86, 485–486 (1995).

    Article  Google Scholar 

  • 36.

    Gomory, D., Szczecińska, M., Sramko, G., Wołosz, K. & Sawicki, J. Genetic diversity and population structure of the rare and endangered plant species Pulsatilla patens (L.) Mill in East Central Europe. PLoS ONE https://doi.org/10.1371/journal.pone.0151730 (2016).

    Article  Google Scholar 

  • 37.

    Lowrey, B. et al. Characterizing population and individual migration patterns among native and restored bighorn sheep (Ovis canadensis). Ecol. Evol.9, 8829–8839. https://doi.org/10.1002/ece3.5435 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Wang, S. H., Bao, L., Wang, T. M., Wang, H. F. & Ge, J. P. Contrasting genetic patterns between two coexisting Eleutherococcus species in northern China. Ecol. Evol.6, 3311–3324. https://doi.org/10.1002/ece3.2118 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Matsui, K. Pollination ecology of four Acer species in Japan with special reference to bee pollinators. Plant Spec. Biol.6, 117–120. https://doi.org/10.1111/j.1442-1984.1991.tb00218.x (1991).

    Article  Google Scholar 

  • 40.

    Rosado, A., Vera-Vélez, R. & Cota-Sánchez, J. H. Floral morphology and reproductive biology in selected maple (Acer L.) species (Sapindaceae). Braz. J. Bot.41, 361–374. https://doi.org/10.1007/s40415-018-0452-1 (2018).

    Article  Google Scholar 

  • 41.

    Lönn, M. & Prentice, H. C. Gene diversity and demographic turnover in central and peripheral populations of the perennial herb Gypsophila fastigiata. Oikos99, 489–498. https://doi.org/10.1034/j.1600-0706.2002.11907.x (2002).

    Article  Google Scholar 

  • 42.

    Kearns, C. A., Inouye, D. W. & Waser, N. M. Endangered mutualisms: the conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst.29, 83–112. https://doi.org/10.1146/annurev.ecolsys.29.1.83 (1998).

    Article  Google Scholar 

  • 43.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science313, 351–354. https://doi.org/10.1126/science.1127863 (2006).

    CAS  Article  ADS  Google Scholar 

  • 44.

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol.25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).

    Article  Google Scholar 

  • 45.

    Booy, G., Hendriks, R. J. J., Smulders, M. J. M., Van Groenendael, J. M. & Vosman, B. Genetic diversity and the survival of populations. Plant Biol.2, 379–395. https://doi.org/10.1055/s-2000-5958 (2000).

    Article  Google Scholar 

  • 46.

    Nosil, P., Funk, D. J. & Ortiz-Barrientos, D. Divergent selection and heterogeneous genomic divergence. Mol. Ecol.18, 375–402. https://doi.org/10.1111/j.1365-294X.2008.03946.x (2009).

    Article  PubMed  Google Scholar 

  • 47.

    Shih, K. M., Chang, C. T., Chung, J. D., Chiang, Y. C. & Hwang, S. Y. Adaptive genetic divergence despite significant isolation-by-distance in populations of Taiwan Cow-Tail Fir (Keteleeria davidiana var. formosana). Front. Plant Sci. https://doi.org/10.3389/fpls.2018.00092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Lu, Z., Wang, Y., Peng, Y., Korpelainen, H. & Li, C. Genetic diversity of Populus cathayana Rehd populations in southwestern china revealed by ISSR markers. Plant Sci.170, 407–412. https://doi.org/10.1016/j.plantsci.2005.09.009 (2006).

    CAS  Article  Google Scholar 

  • 49.

    Liu, C. et al. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China. PLoS ONE9, e87187. https://doi.org/10.1371/journal.pone.0087187 (2014).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 50.

    Tian, H. Z. et al. Genetic diversity in the endangered terrestrial orchid Cypripedium japonicum in East Asia: insights into population history and implications for conservation. Sci. Rep.8, 6467. https://doi.org/10.1038/s41598-018-24912-z (2018).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 51.

    Rasmussen, I. R. & Brødsgaard, B. Gene flow inferred from seed dispersal and pollinator behaviour compared to DNA analysis of restriction site variation in a patchy population of Lotus corniculatus L. Oecologia89, 277–283. https://doi.org/10.1007/BF00317228 (1992).

    CAS  Article  PubMed  ADS  Google Scholar 

  • 52.

    Šmídová, A., Münzbergová, Z. & Plačková, I. Genetic diversity of a relict plant species, Ligularia sibirica (L.) Cass. (Asteraceae). Flora206, 151–157. https://doi.org/10.1016/j.flora.2010.03.003 (2011).

    Article  Google Scholar 

  • 53.

    Ilves, A., Lanno, K., Sammul, M. & Tali, K. Genetic variability, population size and reproduction potential in Ligularia sibirica (L.) populations in Estonia. Conserv. Genet.14, 661–669. https://doi.org/10.1007/s10592-013-0459-x (2013).

    Article  Google Scholar 

  • 54.

    Tian, Z. & Jiang, D. Revisiting last glacial maximum climate over China and East Asian monsoon using PMIP3 simulations. Paleogeogr. Paleoclimatol. Paleoecol.453, 115–126. https://doi.org/10.1016/j.palaeo.2016.04.020 (2016).

    Article  ADS  Google Scholar 

  • 55.

    Manel, S., Poncet, B. N., Legendre, P., Gugerli, F. & Holderegger, R. Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol. Ecol.19, 3824–3835. https://doi.org/10.1111/j.1365-294X.2010.04716.x (2010).

    Article  PubMed  Google Scholar 

  • 56.

    Manel, S. et al. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol. Ecol.21, 3729–3738. https://doi.org/10.1111/j.1365-294X.2012.05656.x (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Bothwell, H. et al. Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach. Conserv. Genet.14, 467–481. https://doi.org/10.1007/s10592-012-0411-5 (2013).

    Article  Google Scholar 

  • 58.

    Fang, J. Y. et al. Divergent selection and local adaptation in disjunct populations of an endangered conifer, Keteleeria davidiana var. formosana (Pinaceae). PLoS ONE. https://doi.org/10.1371/journal.pone.0070162 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Hsieh, Y. C. et al. Historical connectivity, contemporary isolation and local adaptation in a widespread but discontinuously distributed species endemic to Taiwan, Rhododendron oldhamii (Ericaceae). Heredity111, 147–156. https://doi.org/10.1038/hdy.2013.31 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Huang, C. L. et al. Genetic relationships and ecological divergence in Salix species and populations in Taiwan. Tree Genet. Genomes11, 39. https://doi.org/10.1007/s11295-015-0862-1 (2015).

    Article  Google Scholar 

  • 61.

    Li, Y. L., Xue, D. X., Zhang, B. D. & Liu, J. X. Population genomic signatures of genetic structure and environmental selection in the Catadromous Roughskin Sculpin Trachidermus fasciatus. Genome Biol. Evol.11, 1751–1764. https://doi.org/10.1093/gbe/evz118 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Xue, X. X., Li, W. H. & Liu, L. Y. The northward shift of Weihe river and the uplift of Qinling Mountains. J. Northwest Univ. (Nat. Sci. Ed.)32, 451–454 (2002).

    Google Scholar 

  • 63.

    Zhang, Y. Q., Yang, N. & Ma, Y. S. Neotectonics in the southern part of the Taihang uplift, North China. J. Geomech.9, 313–329 (2003).

    Google Scholar 

  • 64.

    Xue, X. X., Li, H. H., Li, Y. X. & Liu, H. J. The new data of the uplifting of Qinling Mountains since the Middle Pleistocene. Quat. Sci.24, 82–87 (2004).

    Google Scholar 

  • 65.

    Zhang, T.-C., Comes, H. P. & Sun, H. Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Mol. Phylogenet. Evol.60, 1–12. https://doi.org/10.1016/j.ympev.2011.04.009 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Ye, J. W., Zhang, Z. K., Wang, H. F., Bao, L. & Ge, J. P. Phylogeography of Schisandra chinensis (Magnoliaceae) reveal multiple refugia with ample gene flow in Northeast China. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00199 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Doyle, J. J., Doyle, J. L., Doyle, J. A. & Doyle, F. J. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem. Bull.19, 11–15 (1987).

    MATH  Google Scholar 

  • 68.

    Russell, D. W. & Sambrook, J. Molecular Cloning: A Laboratory Manual 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001).

    Google Scholar 

  • 69.

    Kikuchi, S. & Shibata, M. Permanent genetic resources: development of polymorphic microsatellite markers in Acer mono Maxim. Mol. Ecol. Resour.8, 339–341. https://doi.org/10.1111/j.1471-8286.2007.01948.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Terui, H., Lian, C. L., Saito, Y. & Ide, Y. Development of microsatellite markers in Acer capillipes. Mol. Ecol. Notes6, 77–79. https://doi.org/10.1111/j.1471-8286.2005.01144.x (2006).

    CAS  Article  Google Scholar 

  • 71.

    Liu, X. H. Genetic diversity and relationship of Acer L.germplasm resources detected by SRAP markers. College of Horticulture and Plant Protection, Yangzhou University. The Master Degree of Agricultural Science (2009).

  • 72.

    Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).

    Article  Google Scholar 

  • 73.

    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics163, 1177–1191 (2003).

    PubMed  PubMed Central  Google Scholar 

  • 74.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol.14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 75.

    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour.4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).

    Article  Google Scholar 

  • 76.

    Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 77.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol.25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).

    Article  Google Scholar 

  • 78.

    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography37, 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x (2014).

    Article  Google Scholar 

  • 79.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).

  • 80.

    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci.14, 927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x (2003).

    Article  Google Scholar 

  • 81.

    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics89, 583–590 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 82.

    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution67, 3403–3411. https://doi.org/10.1111/evo.12134 (2013).

    Article  PubMed  Google Scholar 

  • 83.

    Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol.5, 384–387. https://doi.org/10.1111/2041-210X.12158 (2014).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Asegun Henry on five “grand thermal challenges” to stem the tide of global warming

    MIT researchers and Wyoming representatives explore energy and climate solutions