in

Plant–microbiome interactions: from community assembly to plant health

  • 1.

    Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).

    PubMed  Google Scholar 

  • 2.

    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012). This is one of the first studies to use high-throughput sequencing to profile the plant-associated microbiota, suggesting compartment-specific assembly of microbial communities.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).

    CAS  PubMed  Google Scholar 

  • 4.

    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).

    CAS  PubMed  Google Scholar 

  • 5.

    Ofek-Lalzar, M. et al. Niche and host-associated functional signatures of the root surface microbiome. Nat. Commun. 5, 4950 (2014).

    CAS  PubMed  Google Scholar 

  • 6.

    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015). In this study, shotgun metagenome analysis was used to elucidate the microbial traits involved in the bacterium–bacteriophage, interbacterial and host–bacterium interactions that govern plant colonization.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911–E920 (2015).

    CAS  PubMed  Google Scholar 

  • 8.

    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio 6, e02527–14 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Coleman-Derr, D. et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 209, 798–811 (2016).

    CAS  PubMed  Google Scholar 

  • 10.

    De Souza, R. S. C. et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci. Rep. 6, 28774 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Fonseca-García, C. et al. The cacti microbiome: interplay between habitat-filtering and host-specificity. Front. Microbiol. 7, 150 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA 115, E1157–E1165 (2018).

    CAS  PubMed  Google Scholar 

  • 13.

    Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20, 124–140 (2018).

    CAS  PubMed  Google Scholar 

  • 14.

    Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).

    CAS  PubMed  Google Scholar 

  • 15.

    Xu, J. et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9, 4894 (2018). This study presents one of the most comprehensive investigations on the structure and functional features of the microbiome associated with a particular plant species, identifying the core microbiota and functions that are persistently present at a global scale.

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Bergelson, J., Mittelstrass, J. & Horton, M. W. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Sci. Rep. 9, 24 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Roman-Reyn, V. et al. The rice leaf microbiome has a conserved community structure controlled by complex host-microbe. Preprint at bioRxiv https://doi.org/10.1101/615278 (2019).

  • 19.

    Cregger, M. A. et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Lemanceau, P., Blouin, M., Muller, D. & Moënne-Loccoz, Y. Let the core microbiota be functional. Trends Plant Sci. 22, 583–595 (2017).

    CAS  PubMed  Google Scholar 

  • 21.

    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).

    CAS  PubMed  Google Scholar 

  • 22.

    Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2018).

    Google Scholar 

  • 23.

    Levy, A. et al. Genomic features of bacterial adaptation to plants. Nat. Genet. 50, 138–150 (2018). In this study, comparative genomics is used to identify the genes involved in bacterial adaptation to plants, including genes associated with plant colonization, microorganism–microorganism competition and host–microorganism interactions.

    CAS  Google Scholar 

  • 24.

    Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl Acad. Sci. USA 106, 16428–16433 (2009).

    CAS  PubMed  Google Scholar 

  • 25.

    Liu, Z. et al. A genome-wide screen identifies genes in rhizosphere-associated Pseudomonas required to evade plant defenses. mBio 9, e00433-–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Cole, B. J. et al. Genome-wide identification of bacterial plant colonization genes. PLoS Biol. 15, e2002860 (2018).

    Google Scholar 

  • 27.

    Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 156, 989–996 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Pieterse, C. M. et al. Induced systemic resistance by beneficial microbes. Ann. Rev. Phytopathol. 52, 347–375 (2014).

    CAS  Google Scholar 

  • 29.

    Trivedi, P., Trivedi, C., Grinyer, J., Anderson, I. C. & Singh, B. K. Harnessing host-vector microbiome for sustainable plant disease management of phloem-limited bacteria. Front. Plant Sci. 7, 1423 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Backer, R. et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1473 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Gouda, S. et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 206, 131–140 (2018).

    PubMed  Google Scholar 

  • 32.

    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011). This study identifies vital bacterial groups and functional traits that are involved in building disease-suppressive soils, thus demonstrating that selective enrichment of microbial groups in response to pathogen attack protects plants against infections.

    CAS  PubMed  Google Scholar 

  • 33.

    Santhanam, R., Weinhold, A., Goldberg, J., Oh, Y. & Baldwin, I. T. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl Acad. Sci. USA 112, E5013–E5020 (2015).

    CAS  PubMed  Google Scholar 

  • 34.

    Trivedi, P. et al. Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil. Biol. Biochem. 111, 10–14 (2017).

    CAS  Google Scholar 

  • 35.

    Ravanbakhsh, M., Kowalchuk, G. A. & Jousset, A. Root-associated microorganisms reprogram plant life history along the growth–stress resistance tradeoff. ISME J. 13, 3093–3101 (2019).

    CAS  PubMed  Google Scholar 

  • 36.

    Xue, C. et al. Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci. Rep. 5, 11124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017). In this study, a synthetic microbial community is used to define the molecular interactions that activate a microbiome-mediated response under nutrient-deficient conditions while repressing host immune output, allowing selective microbial colonization.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019). This study demonstrates that slight variation in single plant genes can result in differential recruitment and enrichment of selected microbial groups and functions that correlate with higher nitrogen use efficiency of indica than of japonica varieties of rice.

    CAS  PubMed  Google Scholar 

  • 39.

    Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018). This study demonstrates that biocontrol traits of root-associated bacteria modulate interkingdom interactions between bacterial and filamentous eukaryotic microorganisms, resulting in a balanced plant–microbiome interaction that favours plant growth and survival against root-derived fungi and/or oomycetes.

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5, e00682-13 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015). This study demonstrates a significant overlap between bacterial isolates from plant environments and their representation in culture-independent surveys, suggesting that a substantial proportion of the plant-associated microbiota is culturable.

    CAS  PubMed  Google Scholar 

  • 43.

    Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16, e2003862 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl Acad. Sci. USA 117, 1148–1159 (2019).

    PubMed  Google Scholar 

  • 45.

    Moissl-Eichinger, C. et al. Archaea are interactive components of complex microbiomes. Trends Microbiol. 26, 70–85 (2018).

    CAS  PubMed  Google Scholar 

  • 46.

    Taffner, J. et al. What is the role of Archaea in plants? New insights from the vegetation of alpine bogs. MSphere 3, e00122-–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Taffner, J., Cernava, T., Erlacher, A. & Berg, G. Novel insights into plant-associated archaea and their functioning in arugula (Eruca sativa Mill.). J. Adv. Res. 19, 39–48 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Pratama, A. A. & van Elsas, J. D. The ‘neglected’ soil virome — potential role and impact. Trends Microbiol. 26, 649–662 (2018).

    CAS  PubMed  Google Scholar 

  • 49.

    Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Morella, N. M., Gomez, A. L., Wang, G., Leung, M. S. & Koskella, B. The impact of bacteriophages on phyllosphere bacterial abundance and composition. Mol. Ecol. 27, 2025–2038 (2018).

    PubMed  Google Scholar 

  • 51.

    Castillo, J. D., Vivanco, J. M. & Manter, D. K. Bacterial microbiome and nematode occurrence in different potato agricultural soils. Microb. Ecol. 74, 888–900 (2017).

    PubMed  Google Scholar 

  • 52.

    Elhady, A. et al. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PLoS ONE 12, e0177145 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Treonis, A. M. et al. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Sci. Rep. 8, 2004 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24, 165–176 (2018).

    PubMed  Google Scholar 

  • 55.

    Larousse, M. & Galiana, E. Microbial partnerships of pathogenic oomycetes. PLoS Pathog. 13, e1006028 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Ploch, S. & Thines, M. Obligate biotrophic pathogens of the genus Albugo are widespread as asymptomatic endophytes in natural populations of Brassicaceae. Mol. Ecol. 20, 3692–3699 (2015).

    Google Scholar 

  • 57.

    Benhamou, N. et al. Pythium oligandrum: an example of opportunistic success. Microbiol 158, 2679–2694 (2012).

    CAS  Google Scholar 

  • 58.

    Sapp, M., Ploch, S., Fiore-Donno, A. M., Bonkowski, M. & Rose, L. E. Protists are an integral part of the Arabidopsis thaliana microbiome. Environ. Microbiol. 20, 30–43 (2018).

    CAS  PubMed  Google Scholar 

  • 59.

    Astudillo-García, C. et al. Evaluating the core microbiota in complex communities: a systematic investigation. Environ. Microbiol. 19, 1450–1462 (2017).

    PubMed  Google Scholar 

  • 60.

    Yeoh, Y. K. et al. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat. Commun. 8, 215 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Garrido-Oter, R. et al. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24, 155–167 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016). This study demonstrates the presence of highly interconnected ‘hub species’ in microbial networks that act as mediators between a host and its associated microbiome.

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Muller, E. E. et al. Using metabolic networks to resolve ecological properties of microbiomes. Curr. Opin. Sys. Biol. 8, 73–80 (2018).

    Google Scholar 

  • 64.

    Röttjers, L. & Faust, K. From hairballs to hypotheses — biological insights from microbial networks. FEMS Microbiol. Rev. 42, 761–780 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Shade, A., Jacques, M. A. & Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37, 15–22 (2017).

    PubMed  Google Scholar 

  • 66.

    Gloria, T. C. et al. Functional microbial features driving community assembly during seed germination and emergence. Front. Plant Sci. 9, 902 (2018).

    Google Scholar 

  • 67.

    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Tian, B. et al. Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agric. Ecosys. Env. 247, 149–156 (2017).

    Google Scholar 

  • 69.

    Lau, J. A. & Lennon, J. T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl Acad. Sci. USA. 109, 14058–14062 (2012).

    CAS  PubMed  Google Scholar 

  • 70.

    Gehring, C. A., Sthultz, C. M., Flores-Rentería, L., Whipple, A. V. & Whitham, T. G. Tree genetics defines fungal partner communities that may confer drought tolerance. Proc. Natl Acad. Sci. USA 114, 11169–11174 (2017).

    CAS  PubMed  Google Scholar 

  • 71.

    Zhang, Y. et al. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 5, 97 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390 (2012).

    CAS  PubMed  Google Scholar 

  • 73.

    Jiménez Bremont, J. F. et al. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front. Plant Sci. 5, 95 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 74.

    Busk, P. K. & Lange, L. Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genomics 16, 368 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 75.

    Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).

    CAS  PubMed  Google Scholar 

  • 76.

    Jiang, X. et al. Impact of spatial organization on a novel auxotrophic interaction among soil microbes. ISME J. 12, 1443–1456 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Blair, P. M. et al. Exploration of the biosynthetic potential of the Populus microbiome. mSystems 3, e00045–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Sessitsch, A. et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant Microbe Interact. 25, 28–36 (2012).

    CAS  PubMed  Google Scholar 

  • 79.

    Han, G. Z. Origin and evolution of the plant immune system. New Phytol. 222, 70–83 (2019).

    PubMed  Google Scholar 

  • 80.

    Eitas, T. K. & Dangl, J. L. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr. Opin. Plant Biol. 13, 472–477 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 82.

    McCann, H. C. et al. Origin and evolution of the kiwifruit canker pandemic. Genome Biol. Evol. 9, 932–944 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Berendsen, R. L. et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 12, 1496–1507 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 84.

    Kwak, M. J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100–1109 (2018). This study demonstrates that the disease resistance traits of plant varieties are conferred by selective assembly of a native microbiota to rescue a plant from fungal invasion.

    CAS  Google Scholar 

  • 85.

    Mendes, L. W., Raaijmakers, J. M., de Hollander, M., Mendes, R. & Tsai, S. M. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J. 12, 212–224 (2019).

    Google Scholar 

  • 86.

    Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019). This study demonstrates a microbiome-mediated, multitiered defence system against fungal pathogens, in which the first defence layer is formed by the rhizosphere microbiota; any subsequent attempt to colonize the plant root activates a second layer of defence through plant endophytes that produce antifungal compounds, including effectors, enzymes and antibiotics.

    PubMed  Google Scholar 

  • 87.

    Helfrich, E. J. et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol. 3, 909–919 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2, a012427 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 89.

    Hartmann, A. & Schikora, A. Plant responses to bacterial quorum sensing molecules. Front. Plant Sci. 6, 643 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 90.

    Mousa, W. K. et al. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat. Microbiol. 1, 16167 (2016).

    CAS  PubMed  Google Scholar 

  • 91.

    Trivedi, P., Spann, T. & Wang, N. Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb. Ecol. 62, 324–336 (2011).

    CAS  PubMed  Google Scholar 

  • 92.

    Chagas, F. O. et al. Chemical signaling involved in plant–microbe interactions. Chem. Soc. Rev. 47, 1652–1704 (2018).

    CAS  PubMed  Google Scholar 

  • 93.

    Schmidt, R. et al. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci. Rep. 7, 862 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 94.

    Korenblum, E. et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl Acad. Sci. USA 117, 3874–3883 (2020).

    CAS  PubMed  Google Scholar 

  • 95.

    Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 96.

    Bernal, P., Llamas, M. A., Filloux, A. & Type, V. I. Secretion systems in plant-associated bacteria. Environ. Microbiol. 201, 15–72 (2018).

    Google Scholar 

  • 97.

    Speare, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl Acad. Sci. USA 115, E8528–E8537 (2018).

    CAS  PubMed  Google Scholar 

  • 98.

    Vorholt, J. A., Vogel, C., Carlström, C. I. & Mueller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2019).

    Google Scholar 

  • 99.

    Cordovez, V., Dini-Andreote, F., Carrión, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Ann. Rev. Microbiol. 73, 69–88 (2019).

    CAS  Google Scholar 

  • 100.

    Hestrin, R., Hammer, E. C., Mueller, C. W. & Lehmann, J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2, 233 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 101.

    Averill, C., Bhatnagar, J. M., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).

    CAS  PubMed  Google Scholar 

  • 102.

    Lu, T. et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6, 231 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 103.

    Bodenhausen, K. et al. Petunia- and Arabidopsis-specific root microbiota responses to phosphate supplementation. Phytobiomes J. 3, 112–124 (2019).

    Google Scholar 

  • 104.

    Almario, J. et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc. Natl Acad. Sci. USA 114, E9403–E9412 (2017).

    CAS  PubMed  Google Scholar 

  • 105.

    Hacquard, S. et al. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat. Commun. 7, 1–13 (2016).

    Google Scholar 

  • 106.

    Voges, M. J., Bai, Y., Schulze-Lefert, P. & Sattely, E. S. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc. Natl Acad. Sci. USA 116, 12558–12565 (2019). This study demonstrates that the production of secondary metabolites produced by plants under stress conditions acts as a signalling mechanism to sculpt the rhizosphere microbiome.

    PubMed  Google Scholar 

  • 107.

    Stringlis, I. A. et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl Acad. Sci. USA 115, E5213–E5222 (2018).

    CAS  PubMed  Google Scholar 

  • 108.

    Martínez-Medina, A., Van Wees, S. C. & Pieterse, C. M. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defenses in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Env. 40, 2691–2705 (2017).

    Google Scholar 

  • 109.

    Penton, C. R. et al. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS ONE 9, e93893 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 110.

    Cha, J. Y. et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10, 119–129 (2016).

    CAS  PubMed  Google Scholar 

  • 111.

    Hol, W. G. et al. Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology 96, 2042–2048 (2015).

    PubMed  Google Scholar 

  • 112.

    Carrión, V. J. et al. Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME J. 12, 2307–2321 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 113.

    Chialva, M. et al. Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytol. 220, 1296–1308 (2018).

    CAS  PubMed  Google Scholar 

  • 114.

    Peralta, A. L., Sun, Y., McDaniel, M. D. & Lennon, J. T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).

    Google Scholar 

  • 115.

    Kesten, C. et al. Pathogen-induced pH changes regulate the growth–defense balance of plants. EMBO J. 16, e101822550491 (2019).

    Google Scholar 

  • 116.

    Yuan, J. et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6, 56 (2018).

    Google Scholar 

  • 117.

    Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 118.

    Kong, H. G., Song, G. C. & Ryu, C. M. Inheritance of seed and rhizosphere microbial communities through plant–soil feedback and soil memory. Environ. Microbiol. Rep. 11, 479–486 (2019).

    PubMed  Google Scholar 

  • 119.

    Fitzpatrick, C. R., Mustafa, Z. & Viliunas, J. Soil microbes alter plant fitness under competition and drought. J. Evol. Biol. 32, 438–450 (2019).

    PubMed  Google Scholar 

  • 120.

    Eida, A. A. et al. Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE 13, e0208223 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 121.

    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 122.

    Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. USA 115, E4284–E4293 (2018). Using a multi-‘omics’ approach, this study demonstrates selective enrichment of monoderms (bacteria with a thick cell wall) that possess transporters connected with specialized metabolites produced by plants under drought stress.

    CAS  PubMed  Google Scholar 

  • 123.

    Timm, C. M. et al. Abiotic stresses shift belowground Populus-associated bacteria toward a core stress microbiome. mSystems 3, e00070-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 124.

    Wagner, M. R. et al. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol. Lett. 17, 717–726 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 125.

    Ravanbakhsh, M., Sasidharan, R., Voesenek, L. A., Kowalchuk, G. A. & Jousset, A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome 6, 52 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 126.

    Giauque, H., Connor, E. W. & Hawkes, C. V. Endophyte traits relevant to stress tolerance, resource use and habitat of origin predict effects on host plants. New Phytol. 221, 2239–2249 (2019).

    CAS  PubMed  Google Scholar 

  • 127.

    Kudjordjie, E. N., Sapkota, R., Steffensen, S. K., Fomsgaard, I. S. & Nicolaisen, M. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 7, 59 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 128.

    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470 (2018).

    CAS  PubMed  Google Scholar 

  • 129.

    Huang, A. C. et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389 (2019).

    CAS  PubMed  Google Scholar 

  • 130.

    McCann, H. C., Nahal, H., Thakur, S. & Guttman, D. S. Identification of innate immunity elicitors using molecular signatures of natural selection. Proc. Natl Acad. Sci. USA 109, 4215–4220 (2012).

    CAS  PubMed  Google Scholar 

  • 131.

    Hacquard, S., Spaepen, S., Garrido-Oter, R. & Schulze-Lefert, P. Interplay between innate immunity and the plant microbiota. Ann. Rev. Phytopathol. 55, 565–589 (2017).

    CAS  Google Scholar 

  • 132.

    Chen, H. et al. One-time nitrogen fertilization shifts switchgrass soil microbiomes within a context of larger spatial and temporal variation. PLoS ONE 14, e0211310 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 133.

    Trivedi, P. et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol. 19, 3070–3086 (2017).

    CAS  PubMed  Google Scholar 

  • 134.

    Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 135.

    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    MIT researchers and Wyoming representatives explore energy and climate solutions

    Assessing the value of battery energy storage in future power grids