in

Netting and pan traps fail to identify the pollinator guild of an agricultural crop

  • 1.

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).

    Article  Google Scholar 

  • 2.

    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).

    Article  Google Scholar 

  • 3.

    Aizen, M., Garibaldi, L. A., Cunningham, S. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008).

    CAS  Article  Google Scholar 

  • 4.

    Aizen, M., Garibaldi, L. A., Cunningham, S. & Klein, A. M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103, 1579–1588 (2009).

    Article  Google Scholar 

  • 5.

    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA. 99, 16812–16816 (2002).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Klein, A. M., Steffan-Dewenter, I. & Tscharntke, T. Fruit set of highland coffee increases with the diversity of pollinating bees. Proc. R. Soc. B Biol. Sci. 270, 955–961 (2003).

    Article  Google Scholar 

  • 7.

    Hoehn, P., Tscharntke, T., Tylianakis, J. M. & Steffan-Dewenter, I. Functional group diversity of bee pollinators increases crop yield. Proc. R. Soc. B Biol. Sci. 275, 2283–2291 (2008).

    Article  Google Scholar 

  • 8.

    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Potts, S., Imperatriz-Fonseca, V. & Ngo, H. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2016). https://doi.org/10.5281/zenodo.3402856

  • 10.

    Leong, J. M. & Thorp, R. W. Colour-coded sampling: the pan trap colour preferences of oligolectic and nonoligolectic bees associated with a vernal pool plant. Ecol. Entomol. 24, 329–335 (1999).

    Article  Google Scholar 

  • 11.

    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).

    Article  Google Scholar 

  • 12.

    Wilson, J. S., Griswold, T. & Messinger, O. J. Sampling bee communities (Hymenoptera: Apiformes) in a desert landscape: are pan traps sufficient?. J. Kansas Entomol. Soc. 81, 288–300 (2008).

    Article  Google Scholar 

  • 13.

    Toler, T. R., Evans, E. W. & Tepedino, V. J. Pan-trapping for bees (Hymenoptera: Apiformes) in Utah’s west desert: The importance of color diversity. Pan-Pac. Entomol. 81, 103–113 (2005).

    Google Scholar 

  • 14.

    Nielsen, A. et al. Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecol. Res. 26, 969–983 (2011).

    Article  Google Scholar 

  • 15.

    Saunders, M. E. & Luck, G. W. Pan trap catches of pollinator insects vary with habitat. Aust. J. Entomol. 52, 106–113 (2013).

    Article  Google Scholar 

  • 16.

    Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).

    Article  Google Scholar 

  • 17.

    Kearns, C., Inouye, D. & Waser, N. Endangered mutualisms: the conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst. 29, 83–112 (1998).

    Article  Google Scholar 

  • 18.

    Brunet, J. Pollinator decline: implications for food security and environment. Sci. Glob. https://doi.org/10.33548/scientia371 (2019).

    Article  Google Scholar 

  • 19.

    Popic, T. J., Davila, Y. C. & Wardle, G. M. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps. PLoS ONE 8, e66665 (2013).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Bauer, A. A., Clayton, M. K. & Brunet, J. Floral traits influencing plant attractiveness to three bee species: consequences for plant reproductive success. Am. J. Bot. 104, 1–10 (2017).

    Article  Google Scholar 

  • 21.

    Brunet, J. & Stewart, C. M. Impact of bee species and plant density on alfalfa pollination and potential for gene flow. Psyche A J. Entomol. 2010, 1–7 (2010).

    Article  Google Scholar 

  • 22.

    Wang, X. et al. Biodiversity of wild alfalfa pollinators and their temporal foraging characters in Hexi Corridor Northwest China. Entomol. Fenn. 23, 4–12 (2012).

    Article  Google Scholar 

  • 23.

    Chen, M., Zhao, X. Y. & Zuo, X. A. Pollinator activity and pollination success of Medicago sativa L. in a natural and a managed population. Ecol. Evol. 8, 9007–9016 (2018).

    Article  Google Scholar 

  • 24.

    Cane, J. H. Pollinating bees (Hymenoptera: Apiformes) of U.S. alfalfa compared for rates of pod and seed set. J. Econ. Entomol. 95, 22–27 (2002).

    Article  Google Scholar 

  • 25.

    Bohart, G. E. Alfalfa pollinators with special reference to species other than honey bees. In Proceedings of the 10th International Congress of Entomology, Vol. 4, pp. 929–937 (1958).

  • 26.

    Brookes, B., Small, E., Lefkovitch, L. P., Damman, H. & Fairey, D. T. Attractiveness of alfalfa (Medicago sativa L.) to wild pollinators in relation to wildflowers. Can. J. Plant Sci. 74, 779–783 (1994).

    Article  Google Scholar 

  • 27.

    Bohart, G. E. Pollination of alfalfa and red clover. Annu. Rev. Entomol. 2, 355–380 (1957).

    Article  Google Scholar 

  • 28.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article  Google Scholar 

  • 29.

    Hall, H. G. Color preferences of bees captured in pan traps. J. Kansas Entomol. Soc. 89, 273–276 (2016).

    Article  Google Scholar 

  • 30.

    Campbell, J. W. & Hanula, J. L. Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J. Insect Conserv. 11, 399–408 (2007).

    Article  Google Scholar 

  • 31.

    Heneberg, P. & Bogusch, P. To enrich or not to enrich? Are there any benefits of using multiple colors of pan traps when sampling aculeate Hymenoptera?. J. Insect Conserv. 18, 1123–1136 (2014).

    Article  Google Scholar 

  • 32.

    Moreira, E. F. et al. Are pan traps colors complementary to sample community of potential pollinator insects?. J. Insect Conserv. 20, 583–596 (2016).

    Article  Google Scholar 

  • 33.

    Burd, M. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot. Rev. 60, 83–139 (1994).

    MathSciNet  Article  Google Scholar 

  • 34.

    Herrera, C. M. Pollinator abundance, morphology, and flower visitation rate: analysis of the ‘quantity’ component in a plant-pollinator system. Oecologia 80, 241–248 (1989).

    ADS  Article  Google Scholar 

  • 35.

    Riday, H., Reisen, P., Raasch, J. A., Santa-Martinez, E. & Brunet, J. Selfing rate in an alfalfa seed production field pollinated with leafcutter bees. Crop Sci. 55, 1087–1095 (2015).

    Article  Google Scholar 

  • 36.

    McGregor, S. Insect Pollination of Cultivated Crop Plants. (USDA, 1976). https://doi.org/10.1093/besa/23.1.104

  • 37.

    Grundel, R., Frohnapple, K. J., Jean, R. P. & Pavlovic, N. B. Effectiveness of bowl trapping and netting for inventory of a bee community. Environ. Entomol. 40, 374–380 (2011).

    Article  Google Scholar 

  • 38.

    Oksanen, J. et al. Vegan: community ecology package. R package version 2.5–5. https://CRAN.R-project.org/package=vegan (2019).

  • 39.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).

  • 40.

    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article  Google Scholar 

  • 41.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article  Google Scholar 

  • 42.

    Signorell, A. & Al, E. DescTools: tools for descriptive statistics. R package version 0.99.28. (2019).


  • Source: Ecology - nature.com

    Pit lakes from Southern Sweden: natural radioactivity and elementary characterization

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens