in

The impact of social structure on breeding strategies in an island bird

  • 1.

    Beatley, J. C. Dependence of desert rodents on winter annuals and precipitation. Ecology 50, 721–724 (1969).

    Google Scholar 

  • 2.

    Davis, S. E., Nager, R. G. & Furness, R. W. Food availability affects adult survival as well as breeding success of parasitic jaegers. Ecology 86, 1047–1056 (2005).

    Google Scholar 

  • 3.

    Gomez-Mestre, I., Touchon, J. C. & Warkentin, K. M. Amphibian embryo and parental defenses and a larval predator reduce egg mortality from water mold. Ecology 87, 2570–2581 (2006).

    PubMed  Google Scholar 

  • 4.

    Ilmonen, P., Taarna, T. & Hasselquist, D. Experimentally activated immune defence in female pied flycatchers results in reduced breeding success. Proc. R. Soc. Lond. B Biol. Sci. 267, 665–670 (2000).

    CAS  Google Scholar 

  • 5.

    Kubelka, V. et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362, 680–683 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos. Trans. R. Soc. B Biol. Sci. 363, 2367–2373 (2008).

    Google Scholar 

  • 7.

    Grant, P. R., Grant, B. R., Keller, L. F. & Petren, K. Effects of El nino events on Darwin’s Finch productivity. Ecology 81, 2442–2457 (2000).

    Google Scholar 

  • 8.

    Gwynne, D. T. & Simmons, L. W. Experimental reversal of courtship roles in an insect. Nature 346, 172–174 (1990).

    ADS  Google Scholar 

  • 9.

    Kosztolányi, A., Székely, T., Cuthill, I. C., Yilmaz, K. T. & Berberoglu, S. Ecological constraints on breeding system evolution: The influence of habitat on brood desertion in Kentish plover. J. Anim. Ecol. 75, 257–265 (2006).

    PubMed  Google Scholar 

  • 10.

    Mueller, A. J., Miller, K. D. & Bowers, E. K. Nest microclimate during incubation affects posthatching development and parental care in wild birds. Sci. Rep. 9, 1–11 (2019).

    Google Scholar 

  • 11.

    Öberg, M. et al. Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecol. Evol. 5, 345–356 (2015).

    PubMed  Google Scholar 

  • 12.

    Hettyey, A. & Pearman, P. B. Social environment and reproductive interference affect reproductive success in the frog Rana latastei. Behav. Ecol. 14, 294–300 (2003).

    Google Scholar 

  • 13.

    Maldonado-Chaparro, A. A., Montiglio, P. O., Forstmeier, W., Kempenaers, B. & Farine, D. R. Linking the fine-scale social environment to mating decisions: A future direction for the study of extra-pair paternity. Biol. Rev. 93, 1558–1577 (2018).

    PubMed  Google Scholar 

  • 14.

    Safran, R. J. et al. Using networks to connect individual-level reproductive behavior to population patterns. Trends Ecol. Evol. 34, 497–501 (2019).

    PubMed  Google Scholar 

  • 15.

    Székely, T., Weissing, F. J. & Komdeur, J. Adult sex ratio variation: Implications for breeding system evolution. J. Evol. Biol. 27, 1500–1512 (2014).

    PubMed  Google Scholar 

  • 16.

    Jirotkul, M. Operational sex ratio influences female preference and male–male competition in guppies. Anim. Behav. 58, 287–294 (1999).

    CAS  PubMed  Google Scholar 

  • 17

    Croft, D., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, Princeton, 2008).

    Google Scholar 

  • 18.

    Farine, D. R., Montiglio, P. O. & Spiegel, O. From individuals to groups and back: The evolutionary implications of group phenotypic composition. Trends Ecol. Evol. 30, 609–621 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    McDonald, G. C., Gardner, A. & Pizzari, T. Sexual selection in complex communities: Integrating interspecific reproductive interference in structured populations. Evolution 73, 1025–1036 (2019).

    PubMed  Google Scholar 

  • 20

    McNamara, J. M. & Weissing, F. J. Evolutionary game theory. In Social Behaviour: Genes, Ecology and Evolution (eds Komdeur, J. et al.) 88–106 (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  • 21.

    Aplin, L. M., Farine, D. R., Morand-Ferron, J. & Sheldon, B. C. Social networks predict patch discovery in a wild population of songbirds. Proc. R. Soc. B Biol. Sci. 279, 4199–4205 (2012).

    CAS  Google Scholar 

  • 22.

    Dadda, M., Pilastro, A. & Bisazza, A. Male sexual harassment and female schooling behaviour in the eastern mosquitofish. Anim. Behav. 70, 463–471 (2005).

    Google Scholar 

  • 23.

    Fisher, D. N. & McAdam, A. G. Social traits, social networks and evolutionary biology. J. Evol. Biol. 30, 2088–2103 (2017).

    CAS  PubMed  Google Scholar 

  • 24.

    McDonald, G. C., Farine, D. R., Foster, K. R. & Biernaskie, J. M. Assortment and the analysis of natural selection on social traits. Evolution 71, 2693–2702 (2017).

    PubMed  Google Scholar 

  • 25.

    Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. Biol. 23, R915–R916 (2013).

    CAS  PubMed  Google Scholar 

  • 26.

    Blumstein, D. T. Social behaviour in conservation. In Social Behaviour: Genes, Ecology and Evolution (eds Komdeur, J. et al.) 654–672 (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  • 27.

    Silk, M. J. et al. Using social network measures in wildlife disease ecology, epidemiology, and management. Bioscience 67, 245–257 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Firth, J. A. et al. Personality shapes pair bonding in a wild bird social system. Nat. Ecol. Evol. 2, 1696 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Le Galliard, J.-F., Fitze, P. S., Ferrière, R. & Clobert, J. Sex ratio bias, male aggression, and population collapse in lizards. Proc. Natl. Acad. Sci. U.S.A. 102, 18231–18236 (2005).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Liker, A., Freckleton, R. P. & Székely, T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 4, 1–6 (2013).

    Google Scholar 

  • 31.

    McDonald, G. C., Spurgin, L. G., Fairfield, E. A., Richardson, D. S. & Pizzari, T. Differential female sociality is linked with the fine-scale structure of sexual interactions in replicate groups of red junglefowl, Gallus gallus. Proc. R. Soc. B Biol. Sci. 286, 20191734 (2019).

    Google Scholar 

  • 32.

    Schlicht, L., Valcu, M. & Kempenaers, B. Spatial patterns of extra-pair paternity: Beyond paternity gains and losses. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12293 (2014).

    Article  PubMed  Google Scholar 

  • 33.

    Cunningham, C. et al. Social interactions predict genetic diversification: An experimental manipulation in shorebirds. Behav. Ecol. 29, 609–618 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Oh, K. P. & Badyaev, A. V. Structure of social networks in a passerine bird: Consequences for sexual selection and the evolution of mating strategies. Am. Nat. 176, E80–E89 (2010).

    PubMed  Google Scholar 

  • 35.

    Macario, A., Croft, D. P., Endler, J. A. & Darden, S. K. Early social experience shapes female mate choice in guppies. Behav. Ecol. 28, 833–843 (2017).

    Google Scholar 

  • 36

    Cheetham, S. A., Thom, M. D., Beynon, R. J. & Hurst, J. L. The effect of familiarity on mate choice. In Chemical Signals in Vertebrates 11 (eds Hurst, J. L. et al.) 271–280 (Springer, New York, 2008).

    Google Scholar 

  • 37

    Sánchez-Macouzet, O., Rodríguez, C. & Drummond, H. Better stay together: Pair bond duration increases individual fitness independent of age-related variation. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2013.2843 (2014).

    Article  Google Scholar 

  • 38.

    Firth, J. A. & Sheldon, B. C. Social carry-over effects underpin trans-seasonally linked structure in a wild bird population. Ecol. Lett. 19, 1324–1332 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Bebbington, K. et al. Kinship and familiarity mitigate costs of social conflict between Seychelles warbler neighbors. Proc. Natl. Acad. Sci. 114, E9036–E9045 (2017).

    CAS  PubMed  Google Scholar 

  • 40.

    Grabowska-Zhang, A. M., Sheldon, B. C. & Hinde, C. A. Long-term familiarity promotes joining in neighbour nest defence. Biol. Lett. 8, 544–546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Brandl, H. B., Griffith, S. C., Farine, D. R. & Schuett, W. Wild zebra finches that nest synchronously have long-term stable social ties. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13082 (2019).

    Article  PubMed  Google Scholar 

  • 42.

    Boulinier, T., McCoy, K. D., Yoccoz, N. G., Gasparini, J. & Tveraa, T. Public information affects breeding dispersal in a colonial bird: Kittiwakes cue on neighbours. Biol. Lett. 4, 538–540 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Pärt, T., Arlt, D., Doligez, B., Low, M. & Qvarnström, A. Prospectors combine social and environmental information to improve habitat selection and breeding success in the subsequent year. J. Anim. Ecol. 80, 1227–1235 (2011).

    PubMed  Google Scholar 

  • 44.

    Valone, T. J. & Templeton, J. J. Public information for the assessment of quality: A widespread social phenomenon. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357, 1549–1557 (2002).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Amat, J. A., Fraga, R. M. & Arroyo, G. M. Brood desertion and polygamous breeding in the Kentish Plover Charadrius alexandrinus. Ibis 141, 596–607 (1999).

    Google Scholar 

  • 46.

    Eberhart-Philips, L. J. Mating systems: Diversity and evolutionary origins. In The Population Ecology and Conservation of Charadrius plovers (eds Colwell, M. A. & Haig, S. M.) (CRC Press, Cambridge, 2019).

    Google Scholar 

  • 47.

    Kosztolányi, A. et al. Breeding ecology of Kentish Plover Charadrius alexandrinus in an extremely hot environment. Bird Study 56, 244–252 (2009).

    Google Scholar 

  • 48.

    Lessells, C. M. The mating system of Kentish plovers Charadrius alexandrinus. Ibis 126, 474–483 (1984).

    Google Scholar 

  • 49.

    Székely, T. Why study plovers? The significance of non-model organisms in avian ecology, behaviour and evolution. J. Ornithol. 160, 923–933 (2019).

    Google Scholar 

  • 50.

    Székely, T. & Lessells, C. Mate change by Kentish plovers Charadrius alexandrinus. Ornis Scand. 24, 317–322 (1993).

    Google Scholar 

  • 51.

    Carmona-Isunza, M. C., Küpper, C., Serrano-Meneses, M. A. & Székely, T. Courtship behavior differs between monogamous and polygamous plovers. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-015-2014-x (2015).

    Article  Google Scholar 

  • 52.

    Székely, T., Kosztolányi, A. & Küpper, C. Practical guide for investigating breeding ecology of Kentish plover Charadrius alexandrinus, v 3. Unpubl. Rep. Univ. Bath (2008).

  • 53.

    Franks, D. W., Ruxton, G. D. & James, R. Sampling animal association networks with the gambit of the group. Behav. Ecol. Sociobiol. 64, 493–503 (2010).

    Google Scholar 

  • 54

    Robitaille, A. L., Webber, Q. M. R. & Vander Wal, E. Conducting social network analysis with animal telemetry data: Applications and methods using spatsoc. bioRxiv https://doi.org/10.1101/447284 (2018).

    Article  Google Scholar 

  • 55.

    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).

  • 57.

    Bates, D., Maechler, M., Bolker, B. M. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 64, 1–48 (2015).

    Google Scholar 

  • 58.

    Farine, D. R. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 1309–1320 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 59

    Weiss, M. N. et al. Common datastream permutations of animal social network data are not appropriate for hypothesis testing using regression models. bioRxiv https://doi.org/10.1101/2020.04.29.068056 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Ruxton, G. D. & Neuhäuser, M. Improving the reporting of P-values generated by randomization methods. Methods Ecol. Evol. 4, 1033–1036 (2013).

    Google Scholar 

  • 61.

    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Google Scholar 

  • 62.

    Fraga, R. M. & Amat, J. A. Breeding biology of a Kentish plover (Charadrius alexandrinus) population in an inland saline lake. Ardeola 43, 69–85 (1996).

    Google Scholar 

  • 63.

    Foppen, R. P. B. et al. Survival and emigration rates in Kentish Charadrius alexandrinus and Ringed Plovers Ch. hiaticula in the Delta area, SW-Netherlands. Ardea 94, 159–173 (2006).

    Google Scholar 

  • 64.

    Argüelles-Ticó, A. et al. Geographic variation in breeding system and environment predicts melanin-based plumage ornamentation of male and female Kentish plovers. Behav. Ecol. Sociobiol. 70, 49–60 (2016).

    PubMed  Google Scholar 

  • 65.

    Krüger, H., Väänänen, V.-M., Holopainen, S. & Nummi, P. The new faces of nest predation in agricultural landscapes—A wildlife camera survey with artificial nests. Eur. J. Wildl. Res. 64, 76 (2018).

    Google Scholar 

  • 66.

    Naves, L. C., Cam, E. & Monnat, J. Y. Pair duration, breeding success and divorce in a long-lived seabird: Benefits of mate familiarity?. Anim. Behav. 73, 433–444 (2007).

    Google Scholar 

  • 67.

    Blumstein, D. T., Wey, T. W. & Tang, K. A test of the social cohesion hypothesis: Interactive female marmots remain at home. Proc. R. Soc. B Biol. Sci. 276, 3007–3012 (2009).

    Google Scholar 

  • 68.

    AlRashidi, M. et al. The influence of a hot environment on parental cooperation of a ground-nesting shorebird, the Kentish plover Charadrius alexandrinus. Front. Zool. 7, 1 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 69.

    AlRashidi, M., Kosztolányi, A., Shobrak, M., Küpper, C. & Székely, T. Parental cooperation in an extreme hot environment: Natural behaviour and experimental evidence. Anim. Behav. 82, 235–243 (2011).

    Google Scholar 

  • 70.

    Gómez-Serrano, M. Á & López-López, P. Nest site selection by Kentish plover suggests a trade-off between nest-crypsis and predator detection strategies. PLoS ONE 9, e107121 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Masero, J. A., Monsa, R. & Amat, J. A. Dual function of egg-covering in the Kentish plover Charadrius alexandrinus. Behaviour 149, 881–895 (2012).

    Google Scholar 

  • 72.

    Székely, T. & Cuthill, I. C. Brood desertion in Kentish plover: The value of parental care. Behav. Ecol. 10, 191–197 (1999).

    Google Scholar 

  • 73.

    Jaakkonen, T., Kivelä, S. M., Meier, C. M. & Forsman, J. T. The use and relative importance of intraspecific and interspecific social information in a bird community. Behav. Ecol. 26, 55–64 (2015).

    Google Scholar 

  • 74.

    Danchin, E., Boulinier, T. & Massot, M. Conspecific reproductive success and breeding habitat Selection: Implications for the study of coloniality. Ecology 79, 2415–2428 (1998).

    Google Scholar 

  • 75.

    Doligez, B., Danchin, E., Clobert, J. & Gustafsson, L. The use of conspecific reproductive success for breeding habitat selection in a non-colonial, hole-nesting species, the collared flycatcher. J. Anim. Ecol. 68, 1193–1206 (1999).

    Google Scholar 


  • Source: Ecology - nature.com

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens

    Biodiversity scientists must fight the creeping rise of extinction denial