in

Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism

[adace-ad id="91168"]
  • 1.

    Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, et al. Forest carbon sinks in the Northern Hemisphere. Ecol Appl. 2002;12:891–9.

    Google Scholar 

  • 2.

    Anderson J. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl. 1991;1:326–47.

    CAS  PubMed  Google Scholar 

  • 3.

    Turetsky MR, Bond‐Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, et al. The resilience and functional role of moss in boreal and arctic ecosystems. N Phytol. 2012;196:49–67.

    CAS  Google Scholar 

  • 4.

    DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science. 2008;320:1181.

    CAS  PubMed  Google Scholar 

  • 5.

    Nilsson M-C, Wardle DA. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ. 2005;3:421–8.

    Google Scholar 

  • 6.

    Rousk K, Jones D, DeLuca T. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Front Microbiol. 2013;4:150.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Carleton T, Read D. Ectomycorrhizas and nutrient transfer in conifer–feather moss ecosystems. Can J Bot. 1991;69:778–85.

    Google Scholar 

  • 8.

    Gundale MJ, Nilsson M, Bansal S, Jäderlund A. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. N Phytol. 2012;194:453–63.

    CAS  Google Scholar 

  • 9.

    Gundale MJ, Wardle DA, Nilsson M-C. The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol Lett. 2012;8:805–8.

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Jackson BG, Martin P, Nilsson M-C, Wardle DA. Response of feather moss associated N2 fixation and litter decomposition to variations in simulated rainfall intensity and frequency. Oikos. 2011;120:570–81.

    Google Scholar 

  • 11.

    Jean M-E, Cassar N, Setzer C, Bellenger J-P. Short-term N2 fixation kinetics in a moss-associated cyanobacteria. Environ Sci Technol. 2012;46:8667–71.

    CAS  PubMed  Google Scholar 

  • 12.

    Sorensen PL, Lett S, Michelsen A. Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition. Plant Ecol. 2012;213:695–706.

    Google Scholar 

  • 13.

    Warshan D, Bay G, Nahar N, Wardle DA, Nilsson MC, Rasmussen U. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. ISME J. 2016;10:2198–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Rai AN, Soderback E, Bergman B. Tansley review No. 116 cyanobacterium–plant symbioses. N Phytol. 2000;147:449–81.

    CAS  Google Scholar 

  • 15.

    Meeks JC. Physiological adaptations in nitrogen-fixing Nostoc–plant symbiotic associations. In: Pawlowski K, editor. Prokaryotic symbionts in plants. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 181–205.

    Google Scholar 

  • 16.

    Steinberg NA, Meeks JC. Physiological sources of reductant for nitrogen fixation activity in Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J Bacteriol. 1991;173:7324–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Khamar HJ, Breathwaite EK, Prasse CE, Fraley ER, Secor CR, Chibane FL, et al. Multiple roles of soluble sugars in the establishment of Gunnera-Nostoc endosymbiosis. Plant Physiol. 2010;154:1381–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. N Phytol. 2013;200:54–60.

    CAS  Google Scholar 

  • 19.

    Warshan D, Liaimer A, Pederson E, Kim S-Y, Shapiro N, Woyke T, et al. Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol Biol Evol. 2018;35:1160–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Warshan D, Espinoza JL, Stuart RK, Richter RA, Kim S-Y, Shapiro N, et al. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. ISME J. 2017;11:2821–33.

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Douglas AE. The symbiotic habit. Princeton, NJ: Princeton University Press; 2010.

  • 22.

    Bronstein JL. Mutualism. USA: Oxford, UK: Oxford University Press; 2015.

    Google Scholar 

  • 23.

    Holland JN, Ness JH, Boyle A, Bronstein JL. Mutualisms as consumer-resource interactions. Ecology of predator–prey interactions. Oxford, UK: Oxford University Press; 2005. p. 17–33.

  • 24.

    van der Ploeg JR, Eichhorn E, Leisinger T. Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol. 2001;176:1–8.

    PubMed  Google Scholar 

  • 25.

    Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, et al. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. Mol Plant Microbe Interact. 2011;24:451–7.

    CAS  PubMed  Google Scholar 

  • 26.

    Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.

    CAS  PubMed  Google Scholar 

  • 27.

    Pederson ERA, Warshan D, Rasmussen U. Genome sequencing of Pleurozium schreberi: the assembled and annotated draft genome of a pleurocarpous feather moss. G3: Genes, Genomes, Genetics. 2019;9:2791–7.

    CAS  Google Scholar 

  • 28.

    Hardy RW, Holsten R, Jackson E, Burns R. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 1968;43:1185–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Khayatan B, Bains DK, Cheng MH, Cho YW, Huynh J, Kim R, et al. A putative O-linked β-N-acetylglucosamine transferase is essential for hormogonium development and motility in the filamentous cyanobacterium Nostoc punctiforme. J Bacteriol. 2017;199:e00075-17.

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Falkowski PG, Raven JA. Aquatic photosynthesis. Princeton, NJ: Princeton University Press; 2013.

  • 31.

    Dabundo R, Lehmann MF, Treibergs L, Tobias CR, Altabet MA, Moisander PH, et al. The contamination of commercial 15N2 gas stocks with 15N–labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PloS ONE. 2014;9:e110335.

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Ndegwa PM, Vaddella VK, Hristov AN, Joo HS. Measuring concentrations of ammonia in ambient air or exhaust air stream using acid traps. J Environ Qual. 2009;38:647–53.

    CAS  PubMed  Google Scholar 

  • 33.

    Pett-Ridge J, Weber PK. NanoSIP: NanoSIMS applications for microbial biology. Microbial systems biology. Totowa, NJ: Humana Press; 2012. p. 375–408.

  • 34.

    Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ, Hutcheon ID, et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 2007;1:354–60.

    CAS  PubMed  Google Scholar 

  • 35.

    Liaimer A, Helfrich EJN, Hinrichs K, Guljamow A, Ishida K, Hertweck C, et al. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme. Proc Natl Acad Sci USA. 2015;112:1862–7.

    CAS  PubMed  Google Scholar 

  • 36.

    Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol Plant Microbe Interact. 2010;23:784–90.

    CAS  PubMed  Google Scholar 

  • 37.

    Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev. 2002;66:94–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Wong FC, Meeks JC. Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. Microbiology. 2002;148:315–23.

    CAS  PubMed  Google Scholar 

  • 39.

    Hill DJ. The control of the cell cycle in microbial symbionts. N Phytol. 1989;112:175–84.

    Google Scholar 

  • 40.

    Adams DG, Duggan PS. Signalling in cyanobacteria–plant symbioses. Signaling and communication in plant symbiosis. New York City, NY: Springer; 2012. p. 93–121.

  • 41.

    Hashidoko Y, Nishizuka H, Tanaka M, Murata K, Murai Y, Hashimoto M. Isolation and characterization of 1-palmitoyl-2-linoleoyl-sn-glycerol as a hormogonium-inducing factor (HIF) from the coralloid roots of Cycas revoluta (Cycadaceae). Sci Rep. 2019;9:4751.

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Calderwood A, Kopriva S. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide. 2014;41:72–8.

    CAS  PubMed  Google Scholar 

  • 43.

    Koppenol WH, Bounds PL. Signaling by sulfur-containing molecules. Quantitative aspects. Arch Biochem Biophys. 2017;617:3–8.

    CAS  PubMed  Google Scholar 

  • 44.

    Miller JB, Oldroyd GE. The role of diffusible signals in the establishment of rhizobial and mycorrhizal symbioses. Signaling and communication in plant symbiosis. New York City, NY: Springer; 2012. p. 1–30.

  • 45.

    Duhamel S, Van Wambeke F, Lefevre D, Benavides M, Bonnet S. Mixotrophic metabolism by natural communities of unicellular cyanobacteria in the western tropical South Pacific Ocean. Environ Microbiol. 2018;20:2743–56.

    CAS  PubMed  Google Scholar 

  • 46.

    Stuart RK, Mayali X, Lee JZ, Everroad RC, Hwang M, Bebout BM, et al. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J. 2016;10:1240–51.

    CAS  PubMed  Google Scholar 

  • 47.

    Kaplan D, Peters GA. Interaction of carbon metabolism in the Azolla-Anabaena symbiosis. Symbiosis. 1988;6:53–68.

    CAS  Google Scholar 

  • 48.

    Ray TB, Mayne BC, Toia RE, Peters GA. Azolla-Anabaena relationship: VIII. Photosynthetic characterization of the association and individual partners. Plant Physiol. 1979;64:791–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–82.

    CAS  PubMed  Google Scholar 

  • 50.

    Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, et al. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. mBio. 2015;6:e02109-14.

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A, Flores E, et al. Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J. 2008;27:1299–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Rousk K, Degboe J, Michelsen A, Bradley R, Bellenger JP. Molybdenum and phosphorus limitation of moss‐associated nitrogen fixation in boreal ecosystems. N Phytol. 2017;214:97–107.

    CAS  Google Scholar 

  • 53.

    Solheim B, Zielke M. Associations between cyanobacteria and mosses. In: Rai AN, Bergman B, Rasmussen U, editors. Cyanobacteria in symbiosis. Dordrecht: Springer Netherlands; 2002. p. 137–52.

    Google Scholar 


  • Source: Ecology - nature.com

    For student researchers, no pause for the pandemic

    Urban food subsidies reduce natural food limitations and reproductive costs for a wetland bird