in

Hkakabo Razi landscape as one of the last exemplar of large contiguous forests

  • 1.

    FAO. Global forest resources assessment 2015: How are the world’s forests changing? 2nd edn, (Food and Agriculture Organization of the United Nations, 2015).

  • 2.

    Keenan, R. J. et al. Dynamics of global forest area: Results from the FAO global forest resources assessment. For. Ecol. Manag. 2015(352), 9–20 (2015).

    Google Scholar 

  • 3.

    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558–12558 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the global forest resources assessment 2015. For. Ecol. Manag. 352, 68–77 (2015).

    Google Scholar 

  • 9.

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    PubMed  Google Scholar 

  • 10.

    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554 (2014).

    ADS  Google Scholar 

  • 14.

    Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).

    Google Scholar 

  • 15.

    Leimgruber, P. et al. Forest cover change patterns in Myanmar (Burma) 1990–2000. Environ. Conserv. 32, 356–364 (2005).

    Google Scholar 

  • 16.

    Bhagwat, T. et al. Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002–2014. PLoS ONE 12, e0176364 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    FAO. Forests and tree supporting rural livelihoods: Case studies from Myanmar and Viet Nam by Kollert, W. Thuy, L.T.T., Voan, V.L, Oo, T.S. and Khaing, N. Planted Forests and Trees Working Paper FP/50/E. Rome, Italy (available at https://www.fao.org/3/a-i6710e.pdf) (2017).

  • 18.

    Kyaw, W. W., Sukchai, S., Ketjoy, N. & Ladpala, S. Energy utilization and the status of sustainable energy in Union of Myanmar. Energy Proc. 9, 351–358 (2011).

    Google Scholar 

  • 19.

    Mon, M. S., Mizoue, N., Htun, N. Z., Kajisa, T. & Yoshida, S. Factors affecting deforestation and forest degradation in selectively logged production forest: A case study in Myanmar. For. Ecol. Manag. 267, 190–198 (2012).

    Google Scholar 

  • 20.

    Woods, K. Timber trade flows and actors in Myanmar: The political economy of Myanmar’s timber trade. (2013).

  • 21.

    Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D. & Webb, E. L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 31, 1362–1372 (2017).

    PubMed  Google Scholar 

  • 22.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. Global Biodiversity Conservation: The critical role of hotspot in Biodiversity Hotspots (eds F.E. Zachos & J.C. Habel) 3–22 (Springer, Berlin, 2011).

  • 24.

    Schaefer, H., Bartholomew, B. & Boufford, D. E. Indofevillea jiroi (Cucurbitaceae), a new floral oil producing species from Northeastern Myanmar. Bione 17, 323–332 (2012).

    Google Scholar 

  • 25.

    Hughes, M., Aung, M. M. & Armstrong, K. An updated checklist and new species of Begonia (B. rheophytica) from Myanmar. Edinb. J. Bot. 76, 285–295 (2019).

    Google Scholar 

  • 26.

    Rodda, M., Aung, M. M. & Armstrong, K. A new species, a new subspecies, and new records of Hoya (Apocynaceae, Asclepiadoideae) from Myanmar and China. Brittonia 71, 424–434 (2019).

    Google Scholar 

  • 27.

    Yang, B., Zhou, S.-S., Maung, W. & Tan, Y.-H. Two new species of Impatiens (Balsaminaceae) from Putao, Kachin State, northern Myanmar. Phytotaxa 321, 103–113 (2017).

    Google Scholar 

  • 28.

    Tong, Y. H. & Xia, N. H. New taxa of Agapetes (Ericaceae) from Myanmar. Phytotaxa 184, 39–45 (2014).

    Google Scholar 

  • 29.

    Rabinowitz, A., Amato, G. & Saw, T. K. Discovery of the black muntjac, Muntiacus crinifrons (Artiodactyla, Cervidae), in north Myanmar. Mammalia 62, 105–107 (1998).

    Google Scholar 

  • 30.

    Amato, G., Egan, M. G. & Rabinowitz, A. A new species of muntjac, Muntiacus putaoensis (Artiodactyla: Cervidae) from northern Myanmar. Anim. Conserv. 2, 1–7 (1999).

    Google Scholar 

  • 31.

    Soisook, P. et al. A new species of Murina (Chiroptera: Vespertilionidae) from sub-Himalayan forests of northern Myanmar. Zootaxa 4320, 159–172 (2017).

    Google Scholar 

  • 32.

    Rappole, J. H., Renner, S. C., Shwe, N. M. & Sweet, P. R. A new species of Scimitar-Babbler (Timaliidae: Jabouilleia) from the sub-Himalayan region of Myanmar. Auk 122, 1064–1069 (2005).

    Google Scholar 

  • 33.

    Rappole, J. H., Rasmussen, P. C., Aung, T., Milensky, C. M. & Renner, S. C. Observations on a new species: The Naung Mung Scimitar-Babbler Jabouilleia naungmungensis. Ibis 150, 623–627 (2008).

    Google Scholar 

  • 34.

    Renner, S. C., Rappole, J. H., Kyaw, M., Milensky, C. M. & Päckert, M. Genetic confirmation of the species status of Jabouilleia naungmungensis. J. Ornithol. 159, 63–71 (2018).

    Google Scholar 

  • 35.

    Päckert, M. et al. Pilot biodiversity assessment of the Hkakabo Razi passerine avifauna in northern Myanmar—implications for conservation from molecular genetics. Bird Conserv. Int. 30, 267–288 (2020).

    Google Scholar 

  • 36.

    Bates, P. et al. Intact forests of Hkakabo Razi Landscape are a hotspot of bat diversity in Southeast Asia. Oryx (In Press).

  • 37.

    Oo, S. S. L., Kyaw, M., Hlaing, N. M. & Renner, S. C. New to Myanmar: the Rosy Starling Pastor roseus (Aves: Passeriformes: Sturnidae) in the Hkakabo Razi Landscape. JoTT 12, 15493–15494 (2020).

    Google Scholar 

  • 38.

    Oo, S. S. L., Kyaw, M., Meyers, K. & Renner, S. C. Confirmation of the White-winged Duck from the Hkakabo Razi Landscape, Myanmar. BirdingASIA 30, 86–87 (2018).

    Google Scholar 

  • 39.

    Renner, S. C. et al. Land cover in the Northern forest complex of Myanmar: New insights for conservation. Oryx 41, 27–37 (2007).

    Google Scholar 

  • 40.

    Rao, M. et al. Biodiversity conservation in a changing climate: A review of threats and implications for conservation planning in Myanmar. Ambio 42, 789–804 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Webb, E. L., Phelps, J., Friess, D. A., Rao, M. & Ziegler, A. D. Environment-friendly reform in Myanmar. Science 336, 295–295 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Prescott, G. W. et al. Political transition and emergent forest-conservation issues in Myanmar. Conserv. Biol. 31, 1257–1270 (2017).

    PubMed  Google Scholar 

  • 43.

    De Alban, D. J. et al. Integrating analytical frameworks to investigate land-cover regime shifts in dynamic landscapes. Sustainability 11, 1139 (2019).

    Google Scholar 

  • 44.

    Clifton, J., Hampton, M. P. & Jeyacheya, J. Opening the box? Tourism planning and development in Myanmar: Capitalism, communities and change. Asia Pac. Viewpoint 59, 323–337 (2018).

    Google Scholar 

  • 45.

    Belle, E., Shi, Y. & Bertzky, B. Comparative analysis methodology for World Heritage nominations under biodiversity criteria: A contribution to the IUCN evaluation of natural World Heritage nominations. 21 (UNEP-WCMC and IUCN, Cambridge, UK and Gland, Switzerland, 2014).

  • 46.

    Renner, S. C. et al. Avifauna of the Southeastern Himalayan mountains and neighboring Myanmar hill country. Bonn Zoological Bulletin—Supplementum 62, 1–75 (2015).

    Google Scholar 

  • 47.

    BirdLife International. Endemic Bird Area factsheet: Eastern Himalayas (130), <https://datazone.birdlife.org/eba/> (2015).

  • 48.

    BirdLife International. Endemic Bird Area factsheet: Yunnan mountains (139), <https://datazone.birdlife.org/eba> (2015).

  • 49.

    BirdLife International. Endemic Bird Area factsheet: Northern Myanmar lowlands (s079), <https://datazone.birdlife.org/eba> (2015).

  • 50.

    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data. 4, 170122 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Renner, S. C. & Rappole, J. H. Bird diversity, biogeographic patterns, and endemism of the eastern Himalayas and southeastern Sub-Himalayan mountains in Ornithological Monographs Vol. 70 (ed M. L. Morrison) Ch. 8, 153–166 (American Ornithologists’ Union, 2011).

  • 52.

    Dumbacher, J. P., Miller, J. R., Flannery, M. E. & Yang Xiaojun. Avifauna of the Gaoligong Shan mountains of western China: A hotspot of avian species diversity in Ornithological Monographs Vol. 70 (eds S.C. Renner & J.H. Rappole) Ch. 3, 30–63 (American Ornithologists’ Union, 2011).

  • 53.

    Rappole, J. H., Thein Aung, Rasmussen, P. C. & Renner, S. C. Ornithological exploration in the southeastern sub-Himalayan region of Myanmar in Ornithological Monographs Vol. 70 (ed M. L. Morrison) Ch. 2, 10–29 (American Ornithologists’ Union, 2011).

  • 54.

    Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015).

    ADS  Google Scholar 

  • 55.

    Riano, D., Chuvieco, E., Salas, J. & Aguado, I. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003). IEEE T Geosci. Remote 41, 1056–1061 (2003).

    ADS  Google Scholar 

  • 56.

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, 2 (2007).

    Google Scholar 

  • 57.

    Deng, Y., Chen, X., Chuvieco, E., Warner, T. & Wilson, J. P. Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sens. Environ. 111, 122–134 (2007).

    ADS  Google Scholar 

  • 58.

    Guisan, A., Weiss, S. B. & Weiss, A. D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 143, 107–122 (1999).

    Google Scholar 

  • 59.

    Running, S. W. Estimating primary productivity by combining remote sensing with ecosystem simulation in Remote Sensing of Biosphere Functioning (eds R.J. Hobbs & H.A Mooney) 65–86 (Springer-Verlag, Berlin, 1990).

  • 60.

    Myneni, R. B., Hall, F., Sellers, P. & Marshak, A. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Rem. Sens. 33, 481–486 (1995).

    ADS  Google Scholar 

  • 61.

    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    ADS  Google Scholar 

  • 62.

    Liaw, A. & Wiener, M. Classification and regression by random. Forest 2, 18–22 (2002).

    Google Scholar 

  • 63.

    Plummer, M.JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling in Proceedings of the 3rd international workshop on distributed statistical computing. 125 (Vienna).

  • 64.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2014).

  • 65.

    Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104 (2012).

    ADS  Google Scholar 

  • 66.

    Connette, G., Oswald, P., Songer, M. & Leimgruber, P. Mapping distinct forest types improves overall forest identification based on multi-spectral landsat imagery for Myanmar’s Tanintharyi region. Remote Sens. 8, 2 (2016).

    Google Scholar 

  • 67.

    De Alban, J. D., Connette, G., Oswald, P. & Webb, E. Combined Landsat and L-Band SAR data improves land cover classification and change detection in dynamic tropical landscapes. Remote Sens. 10, 306 (2018).

    ADS  Google Scholar 

  • 68.

    Belgiu, M. & Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogram. Sens. 114, 24–31 (2016).

    Google Scholar 

  • 69.

    Horning, N. Random Forests: An algorithm for image classification and generation of continuous fields data sets. (2010).

  • 70.

    SNAP – ESA Sentinel Application Platform v2.0 (2015).

  • 71.

    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).

    ADS  Google Scholar 

  • 72.

    Colditz, R. R. et al. Potential effects in multi-resolution post-classification change detection. Int. J. Remote Sens. 33, 6426–6445 (2012).

    ADS  Google Scholar 

  • 73.

    Cuba, N. Research note: Sankey diagrams for visualizing land cover dynamics. Landsc. Urban Plan. 139, 163–167 (2015).

    Google Scholar 

  • 74.

    Riitters, K. H. et al. Fragmentation of continental United States forests. Ecosystem 5, 815–822 (2002).

    Google Scholar 

  • 75.

    Riitters, K. H. & Wickham, J. D. Decline of forest interior conditions in the conterminous United States. Sci. Rep. 2, 653 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Riitters, K. H., O’Neill, R. V. & Jones, K. B. Assessing habitat suitability at multiple scales: A landscape-level approach. Biol. Conserv. 81, 191–202 (1997).

    Google Scholar 

  • 77.

    McIntyre, S. & Hobbs, R. A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv. Biol. 13, 1282–1292 (1999).

    Google Scholar 

  • 78.

    Vogt, P. & Riitters, K. GuidosToolbox: universal digital image object analysis. Eur. J. Remote Sens. 50, 352–361 (2017).

    Google Scholar 

  • 79.

    Gillanders, S. N., Coops, N. C., Wulder, M. A., Gergel, S. E. & Nelson, T. Multitemporal remote sensing of landscape dynamics and pattern change: Describing natural and anthropogenic trends. Prog. Phys. Geogr. 32, 503–528 (2008).

    Google Scholar 

  • 80.

    Rubiano, K., Clerici, N., Norden, N. & Etter, A. Secondary forest and shrubland dynamics in a highly transformed landscape in the northern Andes of Colombia (1985–2015). Forest 8, 216 (2017).

    Google Scholar 

  • 81.

    IUSS, W. G. W. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, <https://www.isric.org/explore/wrb> (2015).

  • 82.

    Oldeman, L., Hakkeling, R. & Sombroek, W. World map of the status of human-induced soil degradation: An explanatory note rev. (UNEP and ISRIC, Wageningen, 1991).

    Google Scholar 

  • 83.

    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • 84.

    Venables, W. N. & Ripley, B. D. Modern applied statistics with S 4th edn. (Springer, Berlin, 2002).

    Google Scholar 

  • 85.

    Greene, W. H. Econometric analysis (Prentice Hall, Pearson, 2000).

    Google Scholar 

  • 86.

    Songer, M., Aung Myint, S. B., DeFries, R. & Leimgruber, P. Spatial and temporal deforestation dynamics in protected and unprotected dry forests: A case study from Myanmar (Burma). Metrics 18, 1001–1018 (2008).

    Google Scholar 

  • 87.

    Reddy, C. S. et al. Quantifying and predicting multi-decadal forest cover changes in Myanmar: A biodiversity hotspot under threat. Metrics 28, 1129–1149 (2019).

    Google Scholar 

  • 88.

    Hall, C. A. S., Tian, H., Qi, Y., Pontius, G. & Cornell, J. Modelling spatial and temporal patterns of tropical land use change. J. Biogrph. 22, 753–757 (1995).

    Google Scholar 

  • 89.

    Di Lallo, G., Mundhenk, P., Zamora López, S., Marchetti, M. & Köhl, M. REDD+: Quick assessment of deforestation risk based on available data. Forests 8, 29 (2017).

    Google Scholar 

  • 90.

    Bax, V. & Francesconi, W. Environmental predictors of forest change: An analysis of natural predisposition to deforestation in the tropical Andes region, Peru. Appl. Geogr. 91, 99–110 (2018).

    Google Scholar 

  • 91.

    Pacheco, P. et al. Landscape transformation in tropical Latin America: Assessing trends and policy implications for REDD+. Forest 2, 1–29 (2010).

    Google Scholar 


  • Source: Ecology - nature.com

    For student researchers, no pause for the pandemic

    Urban food subsidies reduce natural food limitations and reproductive costs for a wetland bird