Chen, I. C. et al. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).
Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).
Pearce-Higgins, J. W. et al. Geographical variation in species’ population responses to changes in temperature and precipitation. Proc. R. Soc. Lond. B 282, 20151561 (2015).
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).
Feeley, K. J., Stroud, J. T., Perez, T. M. & Kühn, I. Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers. Distrib. 23, 231–234 (2017).
Stroud, J. T. & Thompson, M. E. Looking to the past to understand the future of tropical conservation: the importance of collecting basic data. Biotropica 51, 293–299 (2019).
Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).
IUCN Red List Categories and Criteria: Version 3.1 (IUCN, 2001).
Winfree, R. et al. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 0067 (2017).
Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887 (2015).
Lowe, J. R. et al. Responses of coral reef wrasse assemblages to disturbance and marine reserve protection on the Great Barrier Reef. Mar. Biol. 166, 119 (2019).
Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151 (2017).
Khaliq, I. et al. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. Lond. B 281, 20141097 (2014).
Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).
Ramsar Convention on Wetlands Global Wetland Outlook: State of the World’s Wetlands and Their Services to People (Ramsar Convention Secretariat, 2018).
Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Aust. J. Ecol. 21, 224–228 (1996).
Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. Lond. B 279, 194–201 (2012).
Jezkova, T. & Wiens, J. J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. Lond. B 283, 20162104 (2016).
Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).
Maclean, I. M. D., Rehfisch, M. M., Delany, S. & Robinson, R. A. The Effects of Climate Change on Migratory Waterbirds within the African-Eurasian Flyway (AEWA, 2007).
Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).
Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. Lond. B 280, 20121890 (2013).
Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).
Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Niche-tracking migrants and niche-switching residents: evolution of climatic niches in New World warblers (Parulidae). Proc. R. Soc. Lond. B 283, 20152458 (2016).
Betts, M. G. et al. Synergistic effects of climate and land-cover change on long-term bird population trends of the western USA: a test of modeled predictions. Front. Ecol. Evol. 7, 186 (2019).
Kingsford, R. T., Bino, G. & Porter, J. L. Continental impacts of water development on waterbirds, contrasting two Australian river basins: global implications for sustainable water use. Glob. Change Biol. 23, 4958–4969 (2017).
Canepuccia, A. D. et al. Waterbird response to changes in habitat area and diversity generated by rainfall in a SW Atlantic coastal lagoon. Waterbirds 30, 541–553 (2007).
Delany, S. Guidance on Waterbird Monitoring Methodology: Field Protocol for Waterbird Counting (Wetlands International, 2010).
van Roomen, M., van Winden, E. & van Turnhout, C. Analyzing Population Trends at the Flyway Level for Bird Populations Covered by the African Eurasian Waterbird Agreement: Details of a Methodology (SOVON Dutch Centre for Field Ornithology, 2011).
LeBaron, G. S. The 115th Christmas Bird Count (National Audubon Society, 2015).
Gill, F. & Donsker, D. (eds) IOC World Bird List Version 5.1 (IOC, 2015).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
R Core Team R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14, 6 (2005).
Walsh, C. & Nally, R. M. hier.part: Hierarchical Partitioning: R package v.1.0-4 (R Foundation for Statistical Computing, 2013).
Link, W. A. & Sauer, J. R. Seasonal components of avian population change: joint analysis of two large-scale monitoring programs. Ecology 88, 49–55 (2007).
Stroud, J. T. & Feeley, K. J. Neglect of the tropics is widespread in ecology and evolution: a comment on Clarke et al. Trends Ecol. Evol. 32, 626–628 (2017).
Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. Lond. B 280, 20122649 (2013).
Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).
van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
de Villemereuil, P., Wells, J., Edwards, R. & Blomberg, S. Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 (2012).
Abadi, F. et al. Importance of accounting for phylogenetic dependence in multi-species mark-recapture studies. Ecol. Modell. 273, 236–241 (2014).
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).
Donoghue, M. J. & Ackerly, D. D. Phylogenetic uncertainties and sensitivity analyses in comparative biology. Phil. Trans. R. Soc. Lond. B 351, 1241–1249 (1996).
Jetz, W. et al. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. OpenBUGS User Manual Version 3.2.3 (2014).
Sturtz, S., Ligges, U. & Gelman, A. R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw. 12, 3 (2005).
The BirdLife Checklist of the Birds of the World Version 7 (BirdLife International, 2014); http://www.birdlife.org/datazone/userfiles/file/Species/Taxonomy/BirdLife_Checklist_Version_70.zip
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’: R package v.1.10.4-3 (R Foundation for Statistical Computing, 2017).
Wickham, H., Francois, R., Henry, L. & Muller, K. dplyr: A Grammar of Data Manipulation: R package v.0.7.4 (R Foundation for Statistical Computing, 2017).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Auguie, B. gridExtra: Miscellaneous Functions for “grid” Graphics: R package v.2.3 (R Foundation for Statistical Computing, 2017).
Brownrigg, R. mapdata: Extra Map Databases: R package v.2.3.0 (R Foundation for Statistical Computing, 2018).
Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1 (2011).
Urbanek, S. png: Read and Write PNG Images: R package v.0.1-7 (R Foundation for Statistical Computing, 2013).
Neuwirth, E. RColorBrewer: ColorBrewer Palettes: R package v.1.1-2 (R Foundation for Statistical Computing, 2014).
Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library: R package v.1.2-8 (R Foundation for Statistical Computing, 2017).
Hijmans, R. J. raster: Geographic Data Analysis and Modeling: R package v.2.6-7 (R Foundation for Statistical Computing, 2017).
Garnier, S. viridis: Default Color Maps from ‘matplotlib’: R package v.0.5.1 (R Foundation for Statistical Computing, 2018).
Nadeau, C. P., Urban, M. C. & Bridle, J. R. Climates past, present, and yet-to-come shape climate change vulnerabilities. Trends Ecol. Evol. 32, 786–800 (2017).
Breed, G. A., Stichter, S. & Crone, E. E. Climate-driven changes in northeastern US butterfly communities. Nat. Clim. Change 3, 142–145 (2012).
Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
Mills, S. C. et al. European butterfly populations vary in sensitivity to weather across their geographical ranges. Glob. Ecol. Biogeogr. 26, 1374–1385 (2017).
Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055–1061 (2013).
Faragó, S. & Hangya, K. Effects of water level on waterbird abundance and diversity along the middle section of the Danube River. Hydrobiologia 697, 15–21 (2012).
Kleijn, D. et al. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 51, 289–298 (2014).
Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).
Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).
Dhanjal-Adams, K. L. et al. Distinguishing local and global correlates of population change in migratory species. Divers. Distrib. 25, 797–808 (2019).
Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
Source: Ecology - nature.com