in

Signatures of local adaptation in the spatial genetic structure of the ascidian Pyura chilensis along the southeast Pacific coast

  • 1.

    Cárdenas, L., Castilla, J. C. & Viard, F. A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. J. Biogeogr. 36, 969–981 (2009).

    Google Scholar 

  • 2.

    Kelly, R. P. & Palumbi, S. R. Genetic structure among 50 species of the northeastern pacific rocky intertidal community. PLoS ONE 5, e8594 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Haye, P. A. et al. Phylogeographic structure in benthic marine invertebrates of the southeast pacific coast of Chile with differing dispersal potential. PLoS ONE 9, e88613 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Hellberg, M. E., Burton, R. S., Neigel, J. E. & Palumbi, S. R. Genetic assessment of connectivity among marine populations. B. Mar. Sci. 70, 273–290 (2002).

    Google Scholar 

  • 5.

    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).

    Google Scholar 

  • 6.

    Marko, P. B. ‘What’s larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol. Ecol. 13, 597–611 (2004).

    PubMed  CAS  Google Scholar 

  • 7.

    Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 393, 1–12 (2009).

    ADS  Google Scholar 

  • 8.

    Haye, P. A. & Muñoz-Herrera, N. C. Isolation with differentiation followed by expansion with admixture in the tunicate Pyura chilensis. BMC Evol. Biol. 13, 252 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Mercier, A. et al. Pelagic propagule duration and developmental mode: reassessment of a fading link. Glob. Ecol. Biogeogr. 22, 517–530 (2013).

    Google Scholar 

  • 10.

    Waters, J. M. & Roy, M. S. Phylogeography of a high-dispersal New Zealand sea-star: does upwelling block gene-flow?. Mol. Ecol. 13, 2797–2806 (2004).

    PubMed  CAS  Google Scholar 

  • 11.

    Teske, P. R. et al. Molecular evidence for long-distance colonization in an Indo-Pacific seahorse lineage. Mar. Ecol. Prog. Ser. 286, 249–260 (2005).

    ADS  CAS  Google Scholar 

  • 12.

    McGovern, T. M., Keever, C. A., Hart, M. W., Saski, C. & Marko, P. B. Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in co-distributed species. Mol. Ecol. 19, 5043–5060 (2010).

    PubMed  Google Scholar 

  • 13.

    Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends. Ecol. Evol. 27, 47–56 (2012).

    PubMed  Google Scholar 

  • 14.

    Brante, A., Fernandez, M. & Viard, F. Phylogeography and biogeography concordance in the marine gastropod Crepipatella dilatata (Calyptraeidae) along the Southeastern Pacific coast. J. Hered. 103, 630–663 (2012).

    PubMed  Google Scholar 

  • 15.

    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    Google Scholar 

  • 16.

    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype-environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).

    PubMed  CAS  Google Scholar 

  • 17.

    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).

    PubMed  Google Scholar 

  • 18.

    Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).

    PubMed  Google Scholar 

  • 19.

    Riginos, C., Crandall, E. D., Liggins, L., Bongaerts, P. & Treml, E. A. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr. Zool. 62, 581–601 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Selkoe, K. A. et al. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).

    ADS  Google Scholar 

  • 21.

    Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of individual-based genetic distance metrics for landscape genetics. Mol. Ecol. Res. 17, 1308–1317 (2017).

    CAS  Google Scholar 

  • 22.

    Martins, K. et al. Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evol. App. 11, 1842–1858 (2018).

    CAS  Google Scholar 

  • 23.

    Razgour, O. et al. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Res. 18, 18–31 (2018).

    Google Scholar 

  • 24.

    Hedgecock, D. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates?. Bull. Mar. Sci. 39, 550–564 (1986).

    Google Scholar 

  • 25.

    Slatkin, M. Gene flow and the geographic structure of natural populations. Science 15, 787–792 (1987).

    ADS  Google Scholar 

  • 26.

    Attard, C. R. M. et al. Ecological disturbance influences adaptive divergence despite high gene flow in golden perch (Macquaria ambigua): implications for management and resilience to climate change. Mol. Ecol. 27, 196–215 (2017).

    PubMed  Google Scholar 

  • 27.

    Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).

    PubMed  Google Scholar 

  • 28.

    Banks, S. C. et al. Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology 88, 3055–3064 (2007).

    PubMed  Google Scholar 

  • 29.

    Galindo, H. M. et al. Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal. Mol. Ecol. 19, 3692–3707 (2010).

    PubMed  Google Scholar 

  • 30.

    Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 3708–3726 (2010).

    PubMed  Google Scholar 

  • 31.

    Schiavina, M., Marino, J. A. M., Zane, L. & Mellà, P. Matching oceanography and genetics at the basin scale. Seascape connectivity of the Mediterranean shore crab in the Adriatic Sea. Mol. Ecol. 23, 5496–5507 (2014).

    PubMed  CAS  Google Scholar 

  • 32.

    Giles, E. C., Saenz-Agudelo, P., Hussey, N. E., Ravasi, T. & Berumen, M. L. Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea. Ecol. Evol. 5, 2487–2502 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Pardo-Gandarillas, M. C. et al. Phylogeography and species distribution modelling reveal the effects of the Pleistocene ice ages on an intertidal limpet from the south-eastern Pacific. J. Biogeogr. 45, 1751–1767 (2018).

    Google Scholar 

  • 34.

    Pujolar, J. M. et al. Genome-wide single-generation signatures of local selection in the panmictic European eel. Mol. Ecol. 23, 2514–2528 (2014).

    PubMed  CAS  Google Scholar 

  • 35.

    Tepolt, C. K. & Palumbi, S. R. Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Mol. Ecol. 24, 4145–4158 (2015).

    PubMed  CAS  Google Scholar 

  • 36.

    Sandoval-Castillo, J., Robinson, N. A., Hart, A. M., Strain, L. W. S. & Beheregaray, L. B. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol. Ecol. 27, 1603–1020 (2018).

    PubMed  Google Scholar 

  • 37.

    Carreras, C. et al. East is east and west is west: population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Div. Dis. 26, 382–398 (2020).

    Google Scholar 

  • 38.

    Tellier, F., Meynard, A. P., Correa, J. A., Faugeron, S. & Valero, M. Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establishes the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: vicariance or parapatry?. Mol. Phyl. Evol. 53, 679–693 (2009).

    CAS  Google Scholar 

  • 39.

    Haye, P. A. et al. Genetic and morphological divergence at a biogeographic break in the beach-dwelling brooder Excirolana hirsuticauda Menzies (Crustacea, Peracarida). BMC Evol. Biol. 19, 118 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Sánchez, R., Sepúlveda, R. D., Brante, A. & Cárdenas, L. Spatial patterns of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Mar. Ecol. Prog. Ser. 434, 121–131 (2011).

    ADS  Google Scholar 

  • 41.

    Lara, C. et al. Coastal biophysical processes and the biogeography of rocky intertidal species along the south-eastern Pacific. J. Biogeogr. 46, 420–431 (2019).

    Google Scholar 

  • 42.

    Lancellotti, D. & Vásquez, J. A. Zoogeografía de macroinvertebrados bentónicos de la costa de Chile: contribución para la conservación marina. Rev. Chil. Hist. Nat. 73, 99–129 (2000).

    Google Scholar 

  • 43.

    Cea, G. Contribución al conocimiento de algunos aspectos de la biología de Pyura chilensis Molina, 1782 (Chordata, Tunicata, Ascidiacea). Tesis de Licenciatura en Biología, Universidad de Concepción, Concepción, Chile. 205 pp. (1970).

  • 44.

    Davis, A. R. Association among ascidians: facilitation of recruitment in Pyura spinifera. Mar. Biol. 126, 35–41 (1996).

    Google Scholar 

  • 45.

    Manríquez, P. & Castilla, J. Role of larval behaviour and microhabitat traits in determining spatial aggregations in the ascidian Pyura chilensis. Mar. Ecol. Prog. Ser. 332, 155–165 (2007).

    ADS  Google Scholar 

  • 46.

    Astorga, M. O. & Ortiz, J. C. Genetic variability and population structure in the tunicate Pyura chilensis Molina, 1782, in the coast of Chile. Rev. Chil. Hist. Nat. 79, 423–434 (2006).

    Google Scholar 

  • 47.

    Segovia, N. I., Gallardo-Escárate, C., Poulin, E. & Haye, P. A. Lineage divergence, local adaptation across a biogeographic break, and artificial transport, shape the genetic structure in the ascidian Pyura chilensis. Sci. Rep. 7, 44559 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Hudson, J., Viard, F., Roby, C. & Rius, M. Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biol. Lett. 12, 20160620 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Ordoñez, V., Pascual, M., Rius, M. & Turon, X. Mixed but not admixed: a spatial analysis of genetic variation of an invasive ascidian on natural and artificial substrates. Mar. Biol. 160, 1645–1660 (2013).

    Google Scholar 

  • 50.

    Valdivia, N., Heidemann, A., Thiel, M., Molis, M. & Wahl, M. Effects of disturbance on diversity of hard-bottom macrobenthic communities at the coast of Chile. Mar. Ecol. Prog. Ser. 299, 45–54 (2005).

    ADS  Google Scholar 

  • 51.

    Cifuentes, M., Kamlah, C., Thiel, M., Lenz, M. & Wahl, M. Effects of temporal variability of disturbance on the succession in marine fouling communities in northern-central Chile. J. Exp. Mar. Biol. 352, 280–294 (2007).

    Google Scholar 

  • 52.

    Aravena, G., Broitman, B. & Stenseth, N. C. Twelve years of change in coastal upwelling along the Central-Northern Coast of Chile: spatially heterogeneous responses to climatic variability. PLoS ONE 9, e90276 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Torres, R. et al. Air-sea CO2 fluxes along the coast of Chile: from CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res. 116, C09006 (2011).

    ADS  Google Scholar 

  • 54.

    Tapia, F. J., Largier, J. L., Castillo, M., Wieters, E. A. & Navarrete, S. A. Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9, e110841 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Montecinos, A. et al. Species replacement along a lineal coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south-east Pacific. BMC Evol. Biol. 12, 97 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Araneda, C. et al. Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecol. Evol. https://doi.org/10.1002/ece3.2110 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Cahill, A. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).

    PubMed  Google Scholar 

  • 58.

    Xu, T. et al. Genome-wide discovery of single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) in deep-sea mussels: potential use in population genomics and cross-species application. Deep-sea. Res. PT II. https://doi.org/10.1016/j.dsr2.2016.03.011 (2016).

    Article  Google Scholar 

  • 59.

    Lal, M. M. et al. A parallel population genomic and hydrodynamic approach to fishery management of highly-dispersive marine invertebrates: the case of the Fijian Black-Lip Pearl Oyster Pinctada margaritifera. PLoS ONE 11, e0161390 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Arcos, D. & Navarro, N. Análisis de un índice de surgencia para la zona de Talcahuano, Chile (Lat. 37°S). Inv. Pesqueras. 33, 91–98 (1986).

    Google Scholar 

  • 61.

    Broitman, B. R., Navarrete, S. A., Smith, F. & Gaines, S. D. Geographic variation of southeastern Pacific intertidal communities. Mar. Ecol. Prog. Ser. 224, 21–34 (2001).

    ADS  Google Scholar 

  • 62.

    Blanchette, C. A. et al. Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J. Biogeogr. 35, 1593–1607 (2008).

    Google Scholar 

  • 63.

    Espinoza, P. et al. Trophic structure in the northern Humboldt Current system: new perspectives from stable isotope analysis. Mar. Biol. 164, 86 (2017).

    Google Scholar 

  • 64.

    Menge, B. A. & Menge, D. N. L. Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 83, 283–310 (2013).

    Google Scholar 

  • 65.

    Fenberg, P. B., Menge, B. A., Raimondi, P. T. & Rivadeneira, M. M. Biogeographic structure of the northeastern Pacific rocky intertidal: the role of upwelling and dispersal to drive patterns. Ecography 38, 93–95 (2015).

    Google Scholar 

  • 66.

    Gaitán-Espitia, J. D. et al. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline. J. Therm. Biol. 68, 14–20 (2014).

    Google Scholar 

  • 67.

    Gaitán-Espitia, J. D. et al. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol. 217, 4379–4386 (2017).

    Google Scholar 

  • 68.

    Tapia, F. J. & Gallardo-Escárate, C. Spatio-temporal transcriptome analysis in the marine snail Tegula atra along central-northern Chile (28–31°S). Mar. Genomics. 61, 5 (2015).

    Google Scholar 

  • 69.

    Ambler, R. P. & Cañete, J. I. Asentamiento y reclutamiento de Pyura chilensis Molina, 1782 (Urochordata: Ascidiacea) sobre placas artificiales suspendidas en Bahía La Herradura, Coquimbo Chille. Rev. Biol. Mar. 26, 403–413 (1991).

    Google Scholar 

  • 70.

    Pérez-Valdés, M., Figueroa-Aguilera, D. & Rojas-Perez, C. Reproductive cycle of sea squirt Pyura chilensis (Urochordata: Ascidiacea) originating from aquaculture mussel systems. Rev. Biol. Mar. Oceanogr. 52, 333–342 (2017).

    Google Scholar 

  • 71.

    Giles, E. C., Petersen-Zúñiga, C., Morales-González, S., Quesada-Calderón, S. & Saenz-Agudelo, P. Novel microsatellite markers for Pyura chilensis reveal fine-scale genetic structure along the southern coast of Chile. Mar. Biodiv. 23, 1–10 (2017).

    Google Scholar 

  • 72.

    Morales-González, S., Giles, E. C., Quesada-Calderón, S. & Saenz-Agudelo, P. Fine-scale hierarchical genetic structure and kinship analysis of the ascidian Pyura chilensis in the southeastern Pacific. Ecol. Evol. 10, 15–20. https://doi.org/10.1002/ece3.5526 (2019).

    Article  Google Scholar 

  • 73.

    Gaggiotti, O. E. et al. Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63, 2939–2951 (2009).

    PubMed  Google Scholar 

  • 74.

    Gagnaire, P. A. et al. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol. Appl 8, 769–786 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 75.

    Gagnaire, P. A. & Gaggiotti, O. E. Detecting polygenic selection in marine populations by combining population genomics and quantitative genetics approaches. Curr. Zool. 62, 603–616 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 76.

    Gili, J. O. & Coma, R. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol. Evol. 13, 316–321 (1998).

    PubMed  CAS  Google Scholar 

  • 77.

    Riisgård, H. U. & Larsen, P. S. Minireview: ciliary filter feeding and bio-fluid mechanics—present understanding and unsolved problems. Limnol. Ocenogr. 46, 882–891 (2001).

    ADS  Google Scholar 

  • 78.

    Petersen, J. K., Mayer, M. & Knudsen, A. Beat frequency of cilia in the branchial basket of the ascidian Ciona intestinalis in relation to temperature and algal cell concentration. Mar. Biol. 133, 185–192 (1999).

    Google Scholar 

  • 79.

    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).

    Google Scholar 

  • 80.

    Thiel, M. et al. The Humboldt current system of Northern and Central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. 45, 195–344 (2007).

    Google Scholar 

  • 81.

    Riginos, C. & Liggins, L. Seascape genetics: populations, individuals, and genes Marooned and Adrift. Geograph. Comp. 7, 197–216 (2013).

    Google Scholar 

  • 82.

    De Donato, M., Peters, S. O., Mitchell, S. E., Hussain, T. & Imumorin, I. G. Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS ONE 8, e62137 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 84.

    Lu, F. et al. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network- based SNP discovery protocol. PLoS Genet. 9, e1003215 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 85.

    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol. Biogeogr. 21, 272–328 (2012).

    Google Scholar 

  • 86.

    Assis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecol. Biogeogr. 27, 277–284 (2017).

    Google Scholar 

  • 87.

    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 88.

    Jeffreys, H. The Theory of Probability 3rd edn. (Oxford University Press, Oxford, UK, 1961).

    Google Scholar 

  • 89.

    Whitlock, M. C. & Lotterhos, K. E. Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of FST. Am. Nat. 186, 24–36 (2015).

    Google Scholar 

  • 90.

    Luu, K., Bazin, E. & Blum, M. G. PCADAPT: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Res. 17, 67–77 (2017).

    CAS  Google Scholar 

  • 91.

    Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).

    PubMed  Google Scholar 

  • 92.

    Dray, S., Legendre, P. & Peres-Neto, P. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Mod. 96, 483–493 (2006).

    Google Scholar 

  • 93.

    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, The Netherlands, 2012).

    Google Scholar 

  • 94.

    Oksanen, J. et al. VEGAN: community Ecology Package—R package version 2.4–3. https://CRAN.R-project.org/package=vegan (2017)

  • 95.

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed  Google Scholar 

  • 96.

    de Villemereuil, P., Frichot, E., Bazin, E., François, O. & Gaggiotti, O. Genome scan methods against more complex models: when and how much should we trust them?. Mol. Ecol. 23, 2006–2019 (2014).

    PubMed  Google Scholar 

  • 97.

    Frichot, E., Schoville, S. D., de Villermeuil, P., Gaggiotti, O. E. & François, O. Detecting adaptive evolution based on association with ecological gradients: orientation matters!. Heredity 115, 22–28 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 98.

    Jombart, T. ADEGENET: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 99.

    Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for Associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 100.

    Guenther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).

    Google Scholar 

  • 101.

    Stucki, S. et al. High performance computation of landscape genomic models integrating local indices of spatial association. Mol. Ecol. Res. 17, 1072–1089 (2016).

    Google Scholar 

  • 102.

    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TREMBL in 2000. Nucleic. Acids. Res. 28, 45–48 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes