in

Salinity-independent dissipation of antibiotics from flooded tropical soil: a microcosm study

  • 1.

    Sánchez-Arcilla, A., Jiménez, J. A., Valdemoro, H. I. & Gracia, V. Implications of climatic change on spanish mediterranean low-lying coasts: the ebro delta case. J. Coast. Res. 242, 306–316 (2008).

    Google Scholar 

  • 2.

    Renaud, F. G., Le, T. T. H., Lindener, C., Guong, V. T. & Sebesvari, Z. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre Province, Mekong Delta. Clim. Change 133, 69–84 (2015).

    ADS  CAS  Google Scholar 

  • 3.

    White, E. & Kaplan, D. Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosyst. Health Sustain. 3, e01258 (2017).

    Google Scholar 

  • 4.

    Field, C. B. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of the Intergovernmental Panel on Climate Change/Edited by Christopher B. Field (Cambridge University Press, Cambridge, 2012).

    Google Scholar 

  • 5.

    Mekong River Commission (MRC). Basin Development Plan scenarios assessment. Technical Note 8: Impacts of changes in salinity intrusion (2010).

  • 6.

    Nguyen, Y. T. B., Kamoshita, A., van Dinh, T. H., Matsuda, H. & Kurokura, H. Salinity intrusion and rice production in Red River Delta under changing climate conditions. Paddy Water Environ. 15, 37–48 (2017).

    Google Scholar 

  • 7.

    Nhan, D. K., Phap, V. A., Phuc, T. H. & Trung, N. H. Rice Production Response and Technological Measures to Adapt to Salinity Intrusion in the Coastal Mekong Delta (CanTho University Press, Can Tho, 2012).

    Google Scholar 

  • 8.

    Cabello, F. C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol. 8, 1137–1144 (2006).

    CAS  PubMed  Google Scholar 

  • 9.

    Le, T. X. & Munekage, Y. Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Mar. Pollut. Bull. 49, 922–929 (2004).

    CAS  PubMed  Google Scholar 

  • 10.

    Jechalke, S., Heuer, H., Siemens, J., Amelung, W. & Smalla, K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 22, 536–545 (2014).

    CAS  PubMed  Google Scholar 

  • 11.

    Rosendahl, I. et al. Dissipation and sequestration of the veterinary antibiotic sulfadiazine and its metabolites under field conditions. Environ. Sci. Technol. 45, 5216–5222 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Dalkmann, P. et al. Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico. PLoS ONE 7, e45397 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8, 1–13 (2008).

    CAS  Google Scholar 

  • 14.

    Jeon, D. S. et al. Reactions and behavior relevant to chemical and physical properties of various veterinary antibiotics in soil. J. Fac. Agric. Kyushu Univ. 59, 391–397 (2014).

    CAS  Google Scholar 

  • 15.

    Blackwell, P. A., Kay, P. & Boxall, A. B. A. The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67, 292–299 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Liu, F. et al. Dissipation of sulfamethoxazole, trimethoprim and tylosin in a soil under aerobic and anoxic conditions. Environ. Chem. 7, 370 (2010).

    ADS  CAS  Google Scholar 

  • 17.

    Carstens, K. L., Gross, A. D., Moorman, T. B. & Coats, J. R. Sorption and photodegradation processes govern distribution and fate of sulfamethazine in freshwater-sediment microcosms. Environ. Sci. Technol. 47, 10877–10883 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Fang, H., Han, Y., Yin, Y., Pan, X. & Yu, Y. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil. Chemosphere 96, 51–56 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Kreuzig, R. & Höltge, S. Investigations on the fate of sulfadiazine in manured soil: laboratory experiments and test plot studies. Environ. Toxicol. Chem. 24, 771–776 (2005).

    CAS  PubMed  Google Scholar 

  • 20.

    Accinelli, C., Koskinen, W. C., Becker, J. M. & Sadowsky, M. J. Environmental fate of two sulfonamide antimicrobial agents in soil. J. Agric. Food Chem. 55, 2677–2682 (2007).

    CAS  PubMed  Google Scholar 

  • 21.

    Hoang, T. T. T., Tu, L. T. C., Le, N. P., Dao, Q. P. & Trinh, P. H. Fate of fluoroquinolone antibiotics in Vietnamese coastal wetland ecosystem. Wetl. Ecol. Manag. 20, 399–408 (2012).

    CAS  Google Scholar 

  • 22.

    Adamek, E., Baran, W. & Sobczak, A. Assessment of the biodegradability of selected sulfa drugs in two polluted rivers in Poland: effects of seasonal variations, accidental contamination, turbidity and salinity. J. Hazard. Mater. 313, 147–158 (2016).

    CAS  PubMed  Google Scholar 

  • 23.

    Radke, M., Lauwigi, C., Heinkele, G., Mürdter, T. E. & Letzel, M. Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test. Environ. Sci. Technol. 43, 3135–3141 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 24.

    Nguyen, D. G. C. et al. Occurrence and dissipation of the antibiotics sulfamethoxazole, sulfadiazine, trimethoprim, and enrofloxacin in the Mekong Delta, Vietnam. PLoS ONE 10, e0131855 (2015).

    Google Scholar 

  • 25.

    Zhang, R. et al. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: occurrence, distribution and ecological risks. Environ. Pollut. 174, 71–77 (2013).

    CAS  PubMed  Google Scholar 

  • 26.

    Chen, H. et al. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: occurrence, bioaccumulation and human dietary exposure. Mar. Pollut. Bull. 90, 181–187 (2015).

    CAS  PubMed  Google Scholar 

  • 27.

    Li, B. & Zhang, T. Biodegradation and adsorption of antibiotics in the activated sludge process. Environ. Sci. Technol. 44, 3468–3473 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 28.

    Lai, H.-T., Wang, T.-S. & Chou, C.-C. Implication of light sources and microbial activities on degradation of sulfonamides in water and sediment from a marine shrimp pond. Bioresour. Technol. 102, 5017–5023 (2011).

    CAS  PubMed  Google Scholar 

  • 29.

    Li, J. & Zhang, H. Factors influencing adsorption and desorption of trimethoprim on marine sediments: mechanisms and kinetics. Environ. Sci. Pollut. Res. 24, 21929–21937 (2017).

    CAS  Google Scholar 

  • 30.

    Sarmah, A. K., Meyer, M. T. & Boxall, A. B. A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65, 725–759 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Managaki, S., Murata, A., Takada, H., Tuyen, B. C. & Chiem, N. H. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environ. Sci. Technol. 41, 8004–8010 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Shimizu, A. et al. Ubiquitous occurrence of sulfonamides in tropical Asian waters. Sci. Total Environ. 452–453, 108–115 (2013).

    ADS  PubMed  Google Scholar 

  • 33.

    Jahn, R. Guidelines for Soil Description 4th edn. (Food and Agriculture Organization of the United Nations, Rome, 2006).

    Google Scholar 

  • 34.

    ISO 10694:1995. Soil Quality – Determination of Organic and Total Carbon After Dry Combustion (Elementary Analysis) (1995).

  • 35.

    Sonmez, S., Buyuktas, D., Okturen, F. & Citak, S. Assessment of different soil to water ratios (1:1, 1:2.5, 1:5) in soil salinity studies. Geoderma 144, 361–369 (2008).

    ADS  CAS  Google Scholar 

  • 36.

    Klute, A. Methods of Soil Analysis. 2nd edn. (American Society of Agronomy, Madison, 1982–86).

  • 37.

    Food and Agriculture Organization of the United Nations. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps (FAO, Rome, 2014).

  • 38.

    OECD. Test No. 302B. Inherent Biodegradability: Zahn-Wellens/EVPA Test (OECD, 1992).

  • 39.

    Förster, M. et al. Sequestration of manure-applied sulfadiazine residues in soils. Environ. Sci. Technol. 43, 1824–1830 (2009).

    ADS  PubMed  Google Scholar 

  • 40.

    Golet, E. M., Strehler, A., Alder, A. C. & Giger, W. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal. Chem. 74, 5455–5462 (2002).

    CAS  PubMed  Google Scholar 

  • 41.

    Göbel, A. et al. Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. J. Chromatogr. A 1085, 179–189 (2005).

    PubMed  Google Scholar 

  • 42.

    Weihermüller, L., Neuser, A., Herbst, M. & Vereecken, H. Problems associated to kinetic fitting of incubation data. Soil Biol. Biochem. 120, 260–271 (2018).

    Google Scholar 

  • 43.

    Srinivasan, P. & Sarmah, A. K. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors. Sci. Total Environ. 479–480, 284–291 (2014).

    ADS  PubMed  Google Scholar 

  • 44.

    Ingerslev, F. & Halling-Sørensen, B. Biodegradability properties of sulfonamides in activated sludge. Environ. Toxicol. Chem. 19, 2467–2473 (2000).

    CAS  Google Scholar 

  • 45.

    Pan, M. & Chu, L. M. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ. 545–546, 48–56 (2016).

    ADS  PubMed  Google Scholar 

  • 46.

    Schauss, K. et al. Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. Trends Anal. Chem. 28, 612–618 (2009).

    CAS  Google Scholar 

  • 47.

    Wu, Y., Williams, M., Smith, L., Chen, D. & Kookana, R. Dissipation of sulfamethoxazole and trimethoprim antibiotics from manure-amended soils. J. Environ. Sci. Health B 47, 240–249 (2012).

    CAS  PubMed  Google Scholar 

  • 48.

    Yang, J.-F. et al. Degradation behavior of sulfadiazine in soils under different conditions. J. Environ. Sci. Health B 44, 241–248 (2009).

    CAS  PubMed  Google Scholar 

  • 49.

    Beulke, S. & Brown, C. Evaluation of methods to derive pesticide degradation parameters for regulatory modelling. Biol. Fertil. Soils 33, 558–564 (2001).

    CAS  Google Scholar 

  • 50.

    Laabs, V., Amelung, W., Pinto, A., Altstaedt, A. & Zech, W. Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados. Chemosphere 41, 1441–1449 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 51.

    Figueroa-Diva, R. A., Vasudevan, D. & MacKay, A. A. Trends in soil sorption coefficients within common antimicrobial families. Chemosphere 79, 786–793 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 52.

    Singh, B. K., Walker, A., Morgan, J. A. W. & Wright, D. J. Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl. Environ. Microbiol. 69, 5198–5206 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Yun, E.-Y., Ro, H.-M., Lee, G.-T. & Choi, W.-J. Salinity effects on chlorpyrifos degradation and phosphorus fractionation in reclaimed coastal tideland soils. Geosci. J. 14, 371–378 (2010).

    ADS  CAS  Google Scholar 

  • 54.

    Yan, N., Marschner, P., Cao, W., Zuo, C. & Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 3, 316–323 (2015).

    Google Scholar 

  • 55.

    Wichern, J., Wichern, F. & Joergensen, R. G. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137, 100–108 (2006).

    ADS  CAS  Google Scholar 

  • 56.

    Brady, N. C. & Weil, R. R. The Nature and Properties of Soils 12th edn. (Prentice Hall, London, 1999).

    Google Scholar 

  • 57.

    Wegst-Uhrich, S. R., Navarro, D. A., Zimmerman, L. & Aga, D. S. Assessing antibiotic sorption in soil: a literature review and new case studies on sulfonamides and macrolides. Chem. Cent. J. 8, 5 (2014).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes