in

The results of biodiversity–ecosystem functioning experiments are realistic

  • 1.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Google Scholar 

  • 3.

    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    PubMed  Google Scholar 

  • 5.

    Schulze, E.-D. & Mooney, H. Biodiversity and Ecosystem Functioning (Springer, 1993).

  • 6.

    Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).

    Google Scholar 

  • 7.

    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).

    PubMed  Google Scholar 

  • 8.

    Hines, J. et al. Mapping change in biodiversity and ecosystem function research: food webs foster integration of experiments and science policy. Adv. Ecol. Res. 61, 297–322 (2019).

    Google Scholar 

  • 9.

    Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    CAS  Google Scholar 

  • 10.

    Roscher, C., Schumacher, J. & Baade, J. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 121, 107–121 (2004).

    Google Scholar 

  • 11.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    CAS  PubMed  Google Scholar 

  • 12.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Google Scholar 

  • 13.

    Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).

    PubMed  Google Scholar 

  • 14.

    O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).

    Google Scholar 

  • 15.

    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    CAS  PubMed  Google Scholar 

  • 16.

    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    CAS  PubMed  Google Scholar 

  • 17.

    Huston, M. A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449–460 (1997).

    PubMed  Google Scholar 

  • 18.

    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Google Scholar 

  • 19.

    Wardle, D. A. et al. Biodiversity and ecosystem function: an issue in ecology. Bull. Ecol. Soc. Am. 81, 235–239 (2000).

    Google Scholar 

  • 20.

    Leps, J. What do the biodiversity experiments tell us about consequences of plant species loss in the real world? Basic Appl. Ecol. 5, 529–534 (2004).

    Google Scholar 

  • 21.

    Srivastava, D. S. & Vellend, M. Biodiversity–ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294 (2005).

    Google Scholar 

  • 22.

    Duffy, J. E. Why biodiversity is important to the functioning of real-world ecosystems. Front. Ecol. Environ. 7, 437–444 (2008).

    Google Scholar 

  • 23.

    Duffy, J. E. Biodiversity effects: trends and exceptions—a reply to Wardle and Jonsson. Front. Ecol. Environ. 8, 11–12 (2010).

    Google Scholar 

  • 24.

    Wardle, D. A. & Jonsson, M. Biodiversity effects in real ecosystems—a response to Duffy. Front. Ecol. Environ. 8, 10–11 (2010).

    Google Scholar 

  • 25.

    Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).

    Google Scholar 

  • 26.

    Manning, P. et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. Adv. Ecol. Res. 61, 323–356 (2019).

    Google Scholar 

  • 27.

    Wilsey, B. J. & Potvin, C. Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81, 887–892 (2000).

    Google Scholar 

  • 28.

    Wilsey, B. J. & Polley, H. W. Realistically low species evenness does not alter grassland species-richness–productivity relationships. Ecology 85, 2693–2700 (2004).

    Google Scholar 

  • 29.

    Hillebrand, H., Bennett, D. & Cadotte, M. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).

    PubMed  Google Scholar 

  • 30.

    Schmitz, M. et al. Consistent effects of biodiversity on ecosystem functioning under varying density and evenness. Folia Geobot. 48, 335–353 (2013).

    Google Scholar 

  • 31.

    Finn, J. A. et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. J. Appl. Ecol. 50, 365–375 (2013).

    Google Scholar 

  • 32.

    Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).

    Google Scholar 

  • 33.

    Schmid, B. & Hector, A. The value of biodiversity experiments. Basic Appl. Ecol. 5, 535–542 (2004).

    Google Scholar 

  • 34.

    Eisenhauer, N. et al. Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. J. Veg. Sci. 27, 1061–1070 (2016).

    Google Scholar 

  • 35.

    Isbell, F. et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11911–11916 (2013).

    CAS  PubMed  Google Scholar 

  • 36.

    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    CAS  PubMed  Google Scholar 

  • 37.

    Buchmann, T. et al. Connecting experimental biodiversity research to real-world grasslands. Perspect. Plant Ecol. Evol. Syst. 33, 78–88 (2018).

    Google Scholar 

  • 38.

    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).

    CAS  Google Scholar 

  • 39.

    Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl Acad. Sci. USA 109, 10394–10397 (2012).

    CAS  PubMed  Google Scholar 

  • 40.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    CAS  PubMed  Google Scholar 

  • 41.

    Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

    Google Scholar 

  • 42.

    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    CAS  Google Scholar 

  • 43.

    Tilman, D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr. 57, 189–214 (1987).

    Google Scholar 

  • 44.

    Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008).

    CAS  PubMed  Google Scholar 

  • 45.

    Inouye, R. et al. Old-field succession on a Minnesota sand plain. Ecology 68, 12–26 (1987).

    Google Scholar 

  • 46.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).

    PubMed  Google Scholar 

  • 47.

    Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    PubMed  Google Scholar 

  • 48.

    Nakamura, G., Gonçalves, L. O. & da Silva Duarte, L. Revisiting the dimensionality of biological diversity. Ecography (Cop.) 43, 539–548 (2020).

    Google Scholar 

  • 49.

    Stevens, R. D. & Tello, J. S. On the measurement of dimensionality of biodiversity. Glob. Ecol. Biogeogr. 23, 1115–1125 (2014).

    Google Scholar 

  • 50.

    Manning, P. et al. Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. J. Appl. Ecol. 52, 1188–1196 (2015).

    CAS  Google Scholar 

  • 51.

    Adler, D. & Kelly, T. vioplot: Violin plot. R package version 0.3.0 (2018).

  • 52.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).

    PubMed  Google Scholar 

  • 55.

    Venail, P. et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626 (2015).

    Google Scholar 

  • 56.

    Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419 (2009).

    PubMed  Google Scholar 

  • 57.

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    CAS  PubMed  Google Scholar 

  • 58.

    Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    PubMed  Google Scholar 

  • 59.

    Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl Acad. Sci. USA 114, 10160–10165 (2017).

    CAS  PubMed  Google Scholar 

  • 60.

    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).

    PubMed  Google Scholar 

  • 61.

    Lavorel, S. et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 99, 135–147 (2011).

    Google Scholar 

  • 62.

    Schmid, B. The species richness–productivity controversy. Trends Ecol. Evol. 17, 113–114 (2002).

    Google Scholar 

  • 63.

    Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998).

    CAS  PubMed  Google Scholar 

  • 64.

    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    van der Plas, F. et al. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    Socher, S. A. et al. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 100, 1391–1399 (2012).

    Google Scholar 

  • 67.

    Hobbs, R. J., Higgs, E. & Harris, J. A. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24, 599–605 (2009).

    PubMed  Google Scholar 

  • 68.

    Klaus, V. H. et al. Do biodiversity–ecosystem functioning experiments inform stakeholders how to simultaneously conserve biodiversity and increase ecosystem service provisioning in grasslands? Biol. Conserv. 245, 108552 (2020).

    Google Scholar 

  • 69.

    Roscher, C. et al. Convergent high diversity in naturally colonized experimental grasslands is not related to increased productivity. Perspect. Plant Ecol. Evol. Syst. 20, 32–45 (2016).

    Google Scholar 

  • 70.

    Ellenberg, H. & Leuschner, C. Vegetation Mitteleuropas mit den Alpen: In Ökologischer, Dynamischer und Historischer Sicht (UTB, 2010).

  • 71.

    Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).

    Google Scholar 

  • 72.

    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Tilman, D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78, 81–92 (1997).

    Google Scholar 

  • 74.

    Catford, J. A. et al. Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. Ecol. Lett. 22, 593–604 (2019).

    PubMed  Google Scholar 

  • 75.

    Fargione, J. et al. From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Proc. R. Soc. B 274, 871–876 (2007).

    PubMed  Google Scholar 

  • 76.

    Londo, G. The decimal scale for releves of permanent quadrats. Vegetatio 33, 61–64 (1976).

    Google Scholar 

  • 77.

    Roscher, C. et al. What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl. Ecol. 14, 187–198 (2013).

    Google Scholar 

  • 78.

    Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Google Scholar 

  • 79.

    Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: Taxonomic standardization of plant species names. R package version 2.1 (2017).

  • 80.

    The Plant List version 1.1 (2013); http://www.theplantlist.org/

  • 81.

    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Google Scholar 

  • 82.

    Martins, W. S., Carmo, W. C., Longo, H. J., Rosa, T. C. & Rangel, T. F. SUNPLIN: simulation with uncertainty for phylogenetic investigations. BMC Bioinform. 14, 324 (2013).

    Google Scholar 

  • 83.

    Rangel, T. F. et al. Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution 69, 1301–1312 (2015).

    PubMed  Google Scholar 

  • 84.

    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Google Scholar 

  • 85.

    Goolsby, E. W., Bruggeman, J. & Ane, C. Rphylopars: Phylogenetic comparative tools for missing data and within-species variation. R package version 0.2.9 (2016).

  • 86.

    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).

    Google Scholar 

  • 87.

    Oksanen, J. et al. Vegan: Community ecology package. R package version 2.3-4 (2016).

  • 88.

    Hill, M. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Google Scholar 

  • 89.

    Smith, B. & Wilson, J. B. A consumer’s guide to evenness indices. Oikos 76, 70–82 (1996).

    Google Scholar 

  • 90.

    Magurran, A. Measuring Biological Diversity (Blackwell, 2004).

  • 91.

    Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 92.

    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).

    PubMed  Google Scholar 

  • 93.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  PubMed  Google Scholar 

  • 94.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed  Google Scholar 

  • 95.

    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed  Google Scholar 

  • 96.

    Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).

    Google Scholar 

  • 97.

    Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12 (2014).

  • 98.

    R: A Language and Environment for Statistical Computing v.3.4.2 (R Core Team, 2019); https://doi.org/10.1007/978-3-540-74686-7

  • 99.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).

    Google Scholar 

  • 100.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Google Scholar 

  • 101.

    Jochum, M. et al. R-code and aggregated data from: The results of biodiversity-ecosystem functioning experiments are realistic. iDiv Data Repository https://doi.org/10.25829/idiv.1869-11-3082 (2020).

  • 102.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE, 2011).

  • 103.

    Pebesma, E. & Bivand, R. Classes and methods for spatial data in R. R News 5, 9–13 (2005).

    Google Scholar 

  • 104.

    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).

  • 105.

    Habel, K., Grasman, R., Gramacy, R. B., Stahel, A. & Sterratt, D. C. geometry: Mesh generation and surface tessellation. R package version 0.4.1 (2019).

  • 106.

    Blonder, B. & Harris, D. hypervolume: High dimensional geometry and set operations using kernel density estimation, support vector machines, and convex hulls. R package version 2.0.11 (2018).

  • 107.

    Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 7, e01619 (2016).

    Google Scholar 

  • 108.

    Brownrigg, R. mapdata: Extra map databases. R package version 2.3.0 (2018).


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes