Bell, M. A., Baumgartner, J. V. & Olson, E. C. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology 11, 258–271 (1985).
Bell, M. A. Implications of a fossil stickleback assemblage for Darwinian gradualism. J. Fish. Biol. 75, 1977–1999 (2009).
Bell, M. A., Travis, M. P. & Blouw, D. M. Inferring natural selection in a fossil threespine stickleback. Paleobiology 32, 562–577 (2006).
Hunt, G., Bell, M. A. & Travis, M. P. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62, 700–710 (2008).
Klepaker, T., Østbye, K. & Bell, M. A. Regressive evolution of the pelvic complex in stickleback fishes: a study of convergent evolution. Evol. Ecol. Res. 15, 413–435 (2013).
Bell, M. A., Ortí, G., Walker, J. A. & Koenings, J. P. Evolution of pelvic reduction in threespine stickleback fish: a test of competing hypotheses. Evolution 47, 906–914 (1993).
Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302–305 (2010).
Cole, N. J., Tanaka, M., Prescott, A. & Tickle, C. Expression of limb initiation genes and clues to the morphological diversification of threespine stickleback. Curr. Biol. 13, R951–R952 (2003).
Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004).
Cresko, W. A. et al. Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc. Natl Acad. Sci. USA 101, 6050–6055 (2004).
Coyle, S. M., Huntingford, F. A. & Peichel, C. L. Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus). J. Hered. 98, 581–586 (2007).
Xie, K. T. et al. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363, 81–84 (2019).
Bell, M. A., Khalef, V. & Travis, M. P. Directional asymmetry of pelvic vestiges in threespine stickleback. J. Exp. Zool. B Mol. Dev. Evol. 308B, 189–199 (2007).
Palmer, A. R. Symmetry breaking and the evolution of development. Science 306, 828–833 (2004).
Marcil, A., Dumontier, É., Chamberland, M., Camper, S. A. & Drouin, J. Pitx1 and Pitx2 are required for development of hindlimb buds. Development 130, 45–55 (2003).
Shapiro, M. D., Bell, M. A. & Kingsley, D. M. Parallel genetic origins of pelvic reduction in vertebrates. Proc. Natl Acad. Sci. USA 103, 13753–13758 (2006).
Bell, M. A. in The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 438–471 (Oxford Univ. Press, 1994).
Peichel, C. L. et al. The genetic architecture of divergence between threespine stickleback species. Nature 414, 901–905 (2001).
Rollins, J. L., Lohman, B. K. & Bell, M. A. Does ion limitation select for pelvic reduction in threespine stickleback (Gasterosteus aculeatus)? Evol. Ecol. Res. 16, 101–120 (2014).
Reimchen, T. E. Spine deficiency and polymorphism in a population of Gasterosteus aculeatus: an adaptation to predators? Can. J. Zool. 58, 1232–1244 (1980).
Reimchen, T. E. in The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 240–276 (Oxford Univ. Press, 1994).
Hoogland, R., Morris, D. & Tinbergen, N. The spines of sticklebacks (Gasterosteus and Pygosteus) as a means of defense against predators (Perca and Esox). Behaviour 10, 205–236 (1956).
Baumgartner, J. V. A new fossil ictalurid catfish from the Miocene middle member of the Truckee Formation, Nevada. Copeia 1982, 38–46 (1982).
Stearley, R. F. & Smith, G. R. Fishes of the Mio-Pliocene western snake river plain and vicinity. Misc. Publ. Mus. Zool. Univ. Mich. 204, 1–43 (2016).
Baker, J. A. in The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 144–187 (Oxford Univ. Press, 1994).
Bell, M. A. Interacting evolutionary constraints in pelvic reduction of threespine sticklebacks, Gasterosteus aculeatus (Pisces, Gasterosteidae). Biol. J. Linn. Soc. Lond. 31, 347–382 (1987).
Bell, M. A. & Harris, E. I. Developmental osteology of the pelvic complex of Gasterosteus aculeatus. Copeia 1985, 789–792 (1985).
Schmid, L. & Sánchez-Villagra, M. R. Potential genetic bases of morphological evolution in the Triassic fish Saurichthys. J. Exp. Zool. B Mol. Dev. Evol. 314B, 519–526 (2010).
Meredith, R. W., Gatesy, J., Murphy, W. J., Ryder, O. A. & Springer, M. S. Molecular decay of the tooth gene Enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet. 5, e1000634 (2009).
Qu, Q., Haitina, T., Zhu, M. & Ahlberg, P. E. New genomic and fossil data illuminate the origin of enamel. Nature 526, 108–111 (2015).
Zhu, M. et al. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502, 188–193 (2013).
Zhu, M. Bone gain and loss: insights from genomes and fossils. Natl Sci. Rev. 1, 490–492 (2014).
Hunt, G. Evolutionary divergence in directions of high phenotypic variance in the ostracode genus Poseidonamicus. Evolution 61, 1560–1576 (2007).
Thompson, J. R. et al. Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid. Sci. Rep. 5, 15541 (2015).
Organ, C. L., Janes, D. E., Meade, A. & Pagel, M. Genotypic sex determination enabled adaptive radiations of extinct marine reptiles. Nature 461, 389–392 (2009).
Organ, C. L., Shedlock, A. M., Meade, A., Pagel, M. & Edwards, S. V. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446, 180–184 (2007).
Organ, C. L. & Shedlock, A. M. Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates. Biol. Lett. 5, 47–50 (2009).
Conte, G. L., Arnegard, M. E., Peichel, C. L. & Schluter, D. The probability of genetic parallelism and convergence in natural populations. Proc. Biol. Sci. 279, 5039–5047 (2012).
Rennison, D. J., Stuart, Y. E., Bolnick, D. I. & Peichel, C. L. Ecological factors and morphological traits are associated with repeated genomic differentiation between lake and stream stickleback. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 374, 20180241 (2019).
Szeto, D. P. et al. Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev. 13, 484–494 (1999).
Thompson, A. C. et al. A novel enhancer near the Pitx1 gene influences development and evolution of pelvic appendages in vertebrates. eLife 7, e38555 (2018).
Bell, M. A., Stewart, J. D. & Park, P. J. The world’s oldest fossil threespine stickleback fish. Copeia 2009, 256–265 (2009).
Rawlinson, S. E. & Bell, M. A. A stickleback fish (Pungitius) from the Neogene Sterling Formation, Kenai Peninsula, Alaska. J. Paleontol. 56, 583–588 (1982).
Rohlf, F. J. tpsDIG v.2.10 (2006).
Bowne, P. S. in The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 28–60 (Oxford Univ. Press, 1994).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Lleonart, J., Salat, J. & Torres, G. J. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 205, 85–93 (2000).
Oke, K. B. et al. Does plasticity enhance or dampen phenotypic parallelism? A test with three lake-stream stickleback pairs. J. Evol. Biol. 29, 126–143 (2016).
Stuart, Y. E. et al. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat. Ecol. Evol. 1, 0158 (2017).
Hartigan, J. A. & Hartigan, P. M. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).
Maechler, M. diptest: Hartigan’s dip statistic for unimodality—corrected v.0.75-7 (2016); https://rdrr.io/cran/diptest/
Source: Ecology - nature.com