in

Longer-lived tropical songbirds reduce breeding activity as they buffer impacts of drought

  • 1.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Google Scholar 

  • 2.

    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dynam. 43, 2607–2627 (2014).

    Google Scholar 

  • 3.

    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).

    Google Scholar 

  • 4.

    Webb, J. K., Brook, B. W. & Shine, R. What makes a species vulnerable to extinction? Comparative life‐history traits of two sympatric snakes. Ecol. Res. 17, 59–67 (2002).

    Google Scholar 

  • 5.

    Clark, M. E. & Martin, T. E. Modeling tradeoffs in avian life history traits and consequences for population growth. Ecol. Model. 209, 110–120 (2007).

    Google Scholar 

  • 6.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • 7.

    Bennett, P. M. & Owens, I. P. F. Variation in extinction risk among birds: chance or evolutionary predisposition? Proc. R. Soc. Lond. B 264, 401–408 (1997).

    Google Scholar 

  • 8.

    Pfister, C. A. Patterns of variance in stage-structured populations: evolutionary predictions and ecological implications. Proc. Natl Acad. Sci. USA 95, 213–218 (1998).

    CAS  Google Scholar 

  • 9.

    Nelson, R. J. Simulated drought affect male reproductive function in deer mice (Permoyscus maniculatus bairdii). Phys. Zool. 66, 99–114 (1993).

    Google Scholar 

  • 10.

    Winne, C. T., Willson, J. D. & Gibbons, J. W. Income breeding allows an aquatic snake Seminatrix pygaea to reproduce normally following prolonged drought-induced aestivation. J. Anim. Ecol. 75, 1352–1360 (2006).

    Google Scholar 

  • 11.

    Boag, P. T. & Grant, P. R. Intense natural selection in a population of Darwin’s finches (Geospizinae) in the Galapagos. Science 214, 82–85 (1981).

    CAS  Google Scholar 

  • 12.

    Grant, P. R., Grant, B. R., Keller, L. F. & Petren, K. Effect of El Niño events on Darwin’s finch productivity. Ecology 81, 2442–2457 (2000).

    Google Scholar 

  • 13.

    Cruz-McDonnell, K. K. & Wolf, B. O. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Glob. Change Biol. 22, 237–253 (2016).

    Google Scholar 

  • 14.

    Sperry, J. H. & Weatherhead, P. J. Prey-mediated effects of drought on condition and survival in a terrestrial snake. Ecology 89, 2770–2776 (2008).

    Google Scholar 

  • 15.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

    Google Scholar 

  • 16.

    Calow, P. The cost of reproduction—a physiological approach. Biol. Rev. 54, 23–40 (1979).

    CAS  Google Scholar 

  • 17.

    Reznick, D. Costs of reproduction: an evaluation of the empirical evidence. Oikos 44, 257–267 (1985).

    Google Scholar 

  • 18.

    Flatt, T. Survival costs of reproduction in Drosophila. Exp. Geron. 46, 369–375 (2011).

    Google Scholar 

  • 19.

    Forbes, M. R. L., Clark, R. G., Weatherhead, P. J. & Armstrong, T. Risk-taking by female ducks: intra- and interspecific tests of nest defense theory. Behav. Ecol. Sociobiol. 34, 79–85 (1994).

    Google Scholar 

  • 20.

    Ghalambor, C. K. & Martin, T. E. Fecundity-survival trade-offs and parental risk-taking in birds. Science 292, 494–497 (2001).

    CAS  Google Scholar 

  • 21.

    Møller, A. P. & Liang, W. Tropical birds take small risks. Behav. Ecol. 24, 267–272 (2012).

    Google Scholar 

  • 22.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    CAS  Google Scholar 

  • 23.

    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    CAS  Google Scholar 

  • 24.

    Martin, T. E., Riordan, M. M., Repin, R., Mouton, J. C. & Blake, W. M. Apparent annual survival estimates of tropical songbirds better reflect life history variation when based on intensive field methods. Glob. Ecol. Biogeogr. 26, 1386–1397 (2017).

    Google Scholar 

  • 25.

    Martin, T. E. Age-related mortality explains life history strategies of tropical and temperate songbirds. Science 349, 966–970 (2015).

    CAS  Google Scholar 

  • 26.

    Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P. & Ton, R. Adult mortality probability and nest predation rates explain parental effort in warming eggs with consequences for embryonic development time. Am. Nat. 186, 223–236 (2015).

    Google Scholar 

  • 27.

    Arslan, N. Ş. & Martin, T. E. Reproductive biology of Grey-breasted Wood-Wren (Henicorhina leucophrys): a comparative study of tropical and temperate wrens. Wilson J. Ornithol. 131, 1–11 (2019).

    Google Scholar 

  • 28.

    Stutchbury, B. J. & Morton, E. S. Behavioral Ecology of Tropical Birds Ch. 5 (Academic Press, 2001).

  • 29.

    Collar, N. in Handbook of the Birds of the World Alive (eds del Hoyo, J. et al.) (Lynx Edicions, 2019); https://doi.org/10.2173/bow.borwht1.01

  • 30.

    Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer, 2001).

  • 31.

    Wisdom, M. J., Mills, L. S. & Doak, D. F. Life stage simulation analysis: estimating vital-rate effects on population growth for conservation. Ecology 81, 628–641 (2000).

    Google Scholar 

  • 32.

    Muñoz, A. P., Kéry, M., Martins, P. V. & Ferraz, G. Age effects on survival of Amazon forest birds and the latitudinal gradient in bird survival. Auk 135, 299–313 (2018).

    Google Scholar 

  • 33.

    Lloyd, P. & Martin, T. E. Fledgling survival increases with development time and adult survival across north and south temperate zones. Ibis 158, 135–143 (2016).

    Google Scholar 

  • 34.

    Ropelewski, C. F. & Jones, P. D. An extension of the Tahiti-Darwin Southern Oscillation Index. Mon. Weather Rev. 115, 2161–2165 (1987).

    Google Scholar 

  • 35.

    Aiba, S. I. & Kitayama, K. Effects of the 1997–98 El Nino drought on rain forests of Mount Kinabalu, Borneo. J. Trop. Ecol. 18, 215–230 (2002).

    Google Scholar 

  • 36.

    Hirshfield, M. F. & Tinkle, D. W. Natural selection and the evolution of reproductive effort. Proc. Natl Acad. Sci. USA 72, 2227–2231 (1975).

    CAS  Google Scholar 

  • 37.

    Martin, T. E., Ton, R. & Oteyza, J. C. Adaptive influence of extrinsic and intrinsic factors on variation of incubation periods among tropical and temperate passerines. Auk 135, 101–113 (2018).

    Google Scholar 

  • 38.

    Wilmers, C. C. & Post, E. Predicting the influence of wolf-provided carrion on scavenger community dynamics under climate change scenarios. Glob. Change Biol. 12, 403–409 (2006).

    Google Scholar 

  • 39.

    Lenssen, N. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124, 6307–6326 (2019).

    Google Scholar 

  • 40.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1311–1393 (Cambridge Univ. Press, 2013).

  • 41.

    Taylor, I. H. et al. The impact of climate mitigation on projections of future drought. Hydrol. Earth Syst. Sci. 17, 2339–2358 (2013).

    Google Scholar 

  • 42.

    Kitayama, K. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetation 102, 149–171 (1992).

    Google Scholar 

  • 43.

    Blake, J. G. & Loiselle, B. A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. Peer J. 3, e1177 (2015).

    Google Scholar 

  • 44.

    Mitchell, A. E., Tuh, F. & Martin, T. E. Breeding biology of an endemic Bornean turdid, the Fruithunter (Chlamydochaera jefferyi), and life history comparisons with Turdus species of the world. Wilson J. Ornithol. 129, 36–45 (2017).

    Google Scholar 

  • 45.

    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 46, 120–139 (1999).

    Google Scholar 

  • 46.

    Shaffer, T. L. A unified approach to analyzing nest success. Auk 121, 526–540 (2004).

    Google Scholar 

  • 47.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach (Springer-Verlag, 2002).

  • 48.

    Pradel, R., Hines, J. E., Lebreton, J. D. & Nichols, J. D. Capture–recapture survival models taking account of transients. Biometrics 53, 60–72 (1997).

    Google Scholar 

  • 49.

    Burnham, K. P., Anderson, D. R., White, G. C., Brownie, C. & Pollock, K. H. Design and Analysis Methods for Fish Survival Experiments Based on Release–recapture (Amer Fisheries Society, 1987).

  • 50.

    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Google Scholar 

  • 51.

    Orme, D. The caper package: comparative analysis of phylogenetics and evolution in R. R package version 3.5.0 http://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (2013).

  • 52.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  Google Scholar 

  • 53.

    Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

    CAS  Google Scholar 

  • 54.

    Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. R package version 2.75 http://mesquiteproject.org (2011).

  • 55.

    Pagel, M. D. A method for the analysis of comparative data. J. Theor. Biol. 156, 431–442 (1992).

    Google Scholar 

  • 56.

    Symonds, M. R. & Blomberg, S. P. in Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology (eds Garamszegi, L. Z.) Ch. 5 (Springer, 2014).

  • 57.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes