in

An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea

  • 1.

    Sanmartín, I., Enghoff, H. & Ronquist, F. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73, 345–390 (2001).

    Google Scholar 

  • 2.

    Sanmartín, I. & Ronquist, F. Southern hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Syst. Biol. 53, 216–243 (2004).

    PubMed  Google Scholar 

  • 3.

    Shaw, A. J. Biogeographic patterns and cryptic speciation in bryophytes. J. Biogeogr. 28, 253–261 (2001).

    Google Scholar 

  • 4.

    Feldberg, K. et al. Phylogenetic biogeography of the leafy liverwort Herbertus (Jungermanniales, Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution. J. Biogeogr. 34, 688–698 (2007).

    Google Scholar 

  • 5.

    Shaw, A. J. et al. Intercontinental genetic structure in the amphi-Pacific peatmoss Sphagnum miyabeanum (Bryophyta: Sphagnaceae). Biol. J. Linn. Soc. 111, 17–37 (2014).

    Google Scholar 

  • 6.

    Vanderpoorten, A., Devos, N., Goffinet, B., Hardy, O. J. & Shaw, A. J. The barriers to oceanic island radiation in bryophytes: Insights from the phylogeogaphy of the moss Grimmia montana. J. Biogeogr. 35, 654–663 (2008).

    Google Scholar 

  • 7.

    Ono, F. Moss spore can tolerate ultra-high pressure. In High pressure Bioscience (eds Akasaka, K. & Matsuki, H.) 443–466 (Springer, New York, 2015).

    Google Scholar 

  • 8.

    van Zanten, B. O. Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J. Hattori Bot. Lab. 44, 455–482 (1978).

    Google Scholar 

  • 9.

    Muñoz, J., Felicísimo, ÁM., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).

    ADS  PubMed  Google Scholar 

  • 10.

    van Zanten, B. O. & Gradstein, S. R. Experimental dispersal geography of neotropical liverworts. Beih. Nova Hedwigia 90, 41–94 (1988).

    Google Scholar 

  • 11.

    Kyrkjeeide, M. O. et al. Long-distance dispersal and barriers shape genetic structure of peatmosses (Sphagnum) across the Northern Hemisphere. J. Biogeogr. 43, 1215–1226 (2016).

    Google Scholar 

  • 12.

    Patiño, J., Goffinet, B., Sim-Sim, M. & Vanderpoorten, A. Is the sword moss (Bryoxiphium) a preglacial Tertiary relict?. Mol. Phylogenet. Evol. 96, 200–206 (2016).

    PubMed  Google Scholar 

  • 13.

    Bechteler, J. et al. Geographical structure, narrow species ranges, and Cenozoic diversification in a pantropical clade of epiphyllous leafy liverworts. Ecol. Evol. 7, 638–653 (2017).

    PubMed  Google Scholar 

  • 14.

    Carter, B. E. et al. Species delimitation and biogeography of a southern hemisphere liverwort clade, Frullania subgenus Microfrullania (Frullaniaceae, Marchantiophyta). Mol. Phylogenet. Evol. 107, 16–26 (2017).

    PubMed  Google Scholar 

  • 15.

    Scheben, A. et al. Multiple transoceanic dispersals and geographical structure in the pantropical leafy liverwort Ceratolejeunea (Lejeuneaceae, Porellales). J. Biogeogr. 43, 1739–1749 (2016).

    Google Scholar 

  • 16.

    Patiño, J. et al. The anagenetic world of spore-producing land plants. New Phytol. 201, 305–311 (2014).

    PubMed  Google Scholar 

  • 17.

    Norhazrina, N., Vanderpoorten, A., Hedenäs, L. & Patiño, J. What are the evolutionary mechanisms explaining the similar species richness patterns in tropical mosses? Insights from the phylogeny of the pantropical genus Pelekium. Mol. Phylogenet. Evol. 105, 139–145 (2016).

    PubMed  Google Scholar 

  • 18.

    Puttik, M. N. et al. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).

    Google Scholar 

  • 19.

    Qiu, Y. L., Cho, Y. R., Cox, J. C. & Palmer, J. D. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394, 671–674 (1998).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U.S.A. 111, E4859–E4868 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA 115, 2274–2283 (2018).

    Google Scholar 

  • 22.

    Heinrichs, J. et al. Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Rev. Palaeobot. Palynol. 221, 59–70 (2015).

    Google Scholar 

  • 23.

    Wilson, R., Heinrichs, J., Hentschel, J., Gradstein, S. R. & Schneider, H. Steady diversification of derived liverworts under tertiary climatic fluctuations. Biol. Lett. 3, 566–569 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Gradstein, S. R. The Liverworts and Hornworts of Colombia and Ecuador 1–880 (Springer, New York, 2020).

    Google Scholar 

  • 25.

    Lee, G. E. A systematic revision of the genus Lejeunea Lib. (Marchantiophyta: Lejeuneaceae) in Malaysia. Cryptogam. Bryol. 34, 381–484 (2013).

    Google Scholar 

  • 26.

    Lee, G. E., Bechteler, J. & Heinrichs, J. A revision of unrevised taxon names of Taxilejeunea (Marchantiophyta: Lejeuneaceae) from Asia. Phytotaxa 358, 226–248 (2018).

    Google Scholar 

  • 27.

    Heinrichs, J. et al. Molecular phylogeny of the leafy liverwort Lejeunea (Porellales): Evidence for a neotropical origin, uneven distribution of sexual systems and insufficient taxonomy. PLoS ONE 8, e82547 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Heinrichs, J. et al. Crown group Lejeuneaceae and pleurocarpous mosses in early eocene (Ypresian) Indian amber. PLoS ONE 8, e82547 (2016).

    Google Scholar 

  • 29.

    Tiffney, B. H. The eocene north atlantic land bridge: Its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arbor. 66, 243–273 (1985).

    Google Scholar 

  • 30.

    Tiffney, B. H. & Manchester, S. R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere tertiary. Int. J. Plant Sci. 162, 3–17 (2001).

    Google Scholar 

  • 31.

    Brikiatis, L. The De Geer, Thulean and Beringia routes: Key concepts for understanding early Cenozoic biogeography. J. Biogeogr. 41, 1036–1054 (2014).

    Google Scholar 

  • 32.

    Laenen, B. et al. Increased diversification rates follow shifts to bisexuality in liverworts. New Phytol. 210, 1121–1129 (2016).

    PubMed  Google Scholar 

  • 33.

    Erwin, D. H. Climate as a driver of evolutionary change. Curr. Biol. 19, R575-583 (2009).

    CAS  PubMed  Google Scholar 

  • 34.

    Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: Temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22, 1900–1912 (2019).

    PubMed  Google Scholar 

  • 35.

    Reiner-Drehwald, M. E. Catalogue of the genus Lejeunea Lib. (Hepaticae) of Latin America. Bryophyt. Bibl. 54, 1–101 (1999).

    Google Scholar 

  • 36.

    Lee, G. E. et al. The leafy liverwort genus Lejeunea (Porellales, Jungermanniopsida) in Miocene Domican amber. Rev. Palaeobot. Palynol. 238, 144–150 (2017).

    Google Scholar 

  • 37.

    Lee, G. E., Schäfer-Verwimp, A., Schmidt, A. R. & Heinrichs, J. Transfer of the miocene Lejeunea palaeomexicana grolle to Ceratolejeunea. Cryptogam. Bryol. 36, 335–341 (2015).

    Google Scholar 

  • 38.

    Denk, T., Grimsson, F., Zetter, R. & Simonarson, L. The Biogeographic history of Iceland – The North Atlantic Land Bridge revisited. in Late Cainozoic floras of Iceland, 15 million years of vegetation and climate history in the northern North Atlantic, 647–666 (Springer, 2011).

  • 39.

    Graham, A. The role of land bridges, ancient environments, and migrations in the assembly of the North America flora. J. Syst. Evol. 56, 405–429 (2018).

    Google Scholar 

  • 40.

    Jiang, D. et al. Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. Natl. Sci. Rev. 6, 739–745 (2019).

    Google Scholar 

  • 41.

    Morley, R. J. Why are there so many primitive angiosperms in the rain forests of Asia-Australia? In Floral and Faunal Migrations and Evolution in SE Asia-Australia (eds Metcalfe, I. et al.) 185–200 (Swetz & Zeitliner, Lisse, 2001).

    Google Scholar 

  • 42.

    Couvreur, T. L. P. et al. Early evolutionary history of the flowering plant family Annonaceae: Steady diversification and boreotropical geodispersal. J. Biogeogr. 38, 664–680 (2011).

    Google Scholar 

  • 43.

    Davis, C. C., Bell, C. D., Mathews, S. & Donoghue, M. J. Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proc. Natl. Acad. Sci. U.S.A. 99, 6833–6837 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Muellner, A. N., Savolainen, V., Samuel, R. & Chase, M. W. The mahogamy family “out of Africa”: Divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Mol. Phylogenet. Evol. 40, 236–250 (2006).

    CAS  PubMed  Google Scholar 

  • 45.

    Schneider, H. et al. Chloroplast phylogeny of asplenioid ferns based on rbcL and trnL-F spacer sequences (Polypodiidae, Aspleniaceae) and its implications for biogeography. Syst. Bot. 29, 260–274 (2004).

    Google Scholar 

  • 46.

    Wei, R. et al. Eurasian origin, boreotropical migration and transoceanic dispersal in the pantropical fern genus Diplazium (Athyriaceae). J. Biogeogr. 42, 1809–1819 (2015).

    Google Scholar 

  • 47.

    Hennequin, S., Hovenkamp, P., Christenhusz, M. J. M. & Schneider, H. Phylogenetics and biogeography of Nephrolepis—A tale of old settlers and young tramps. Bot. J. Linn. Soc. 164, 113–127 (2010).

    Google Scholar 

  • 48.

    Wen, J., Nie, Z. L. & Ickert-Bond, S. M. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. J. Syst. Evol. 54, 469–490 (2016).

    Google Scholar 

  • 49.

    Shaw, A. J. et al. Pleistocene survival, regional genetic structure and interspecific gene flow among three northern peat-mosses: Sphagnum inexspectatum, S. orientale and S. miyabeanum. J. Biogeogr. 42, 364–376 (2014).

    Google Scholar 

  • 50.

    Bosboom, R. E. et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 385–398 (2011).

    Google Scholar 

  • 51.

    Chmielewski, M. W. & Eppley, S. M. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proc. R. Soc. B 286, 20182253 (2019).

    CAS  PubMed  Google Scholar 

  • 52.

    Heinken, T., Lees, R., Raudnitschka, D. & Rung, S. Epizoochorous dispersal of bryophytes stem fragments by roe deer (Capreoluscapreolus) and wild boar (Susscrofa). J. Bryol. 23, 293–300 (2001).

    Google Scholar 

  • 53.

    Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytol. 215, 891–905 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Nie, Z. L. et al. Recent assembly of the global herbaceous flora: Evidence from the paper daisies (Asteraceae: Gnaphalieae). New Phytol. 209, 1795–1806 (2016).

    CAS  PubMed  Google Scholar 

  • 55.

    Morley, R. J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In Tropical Rainforest Responses to Climate Change (eds Bush, M. B. et al.) 1–34 (Springer, New York, 2011).

    Google Scholar 

  • 56.

    Jaramillo, C., Rueda, M. J. & Mora, G. Cenozoic plant diversity in the Neotropics. Science 311, 1893–1896 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 57.

    Kong, H. et al. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Mol. Ecol. 26, 6414–6429 (2017).

    PubMed  Google Scholar 

  • 58.

    Tada, R., Zheng, H. & Clift, D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Prog. Earth Planet Sci. 3, 4–26 (2016).

    ADS  Google Scholar 

  • 59.

    Proctor, M. C. F. et al. Desiccation-tolerance in bryophytes. Bryologist 110, 595–621 (2007).

    CAS  Google Scholar 

  • 60.

    McDaniel, S. F., Atwood, J. & Burleigh, J. G. Recurrent evolution of dioecy in bryophytes. Evolution 67, 567–572 (2012).

    PubMed  Google Scholar 

  • 61.

    van Zanten, B. O. & Pócs, T. Distribution and dispersal of bryophytes. Adv. Bryol. 1, 479–562 (1981).

    Google Scholar 

  • 62.

    Laenen, B. et al. Geographical range in liverworts: Does sex really matter?. J. Biogeogr. 43, 627–635 (2016).

    Google Scholar 

  • 63.

    Lee, G. E., Bechteler, J., Pócs, T., Schäfer-Verwimp, A. & Heinrichs, J. Molecular and morphological evidence for an intercontinental range of the liverwort Lejeunea pulchriflora (Marchantiophyta: Lejeuneaceae). Org. Divers. Evol. 16, 13–21 (2016).

    Google Scholar 

  • 64.

    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS  Google Scholar 

  • 65.

    Janssen, T. et al. Neoendemism in Madagascan scaly tree ferns results from recent, coincident diversification bursts. Evolution 62, 1876–1889 (2008).

    PubMed  Google Scholar 

  • 66.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    CAS  PubMed  Google Scholar 

  • 68.

    Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Mason-Gamer, R. J. & Kellogg, E. A. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45, 524–545 (1996).

    Google Scholar 

  • 70.

    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Larget, B. & Simon, D. L. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 16, 750–759 (1999).

    CAS  Google Scholar 

  • 73.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Nagori, M. L., Khosla, S. C. & Jakhar, S. R. middle eocene ostracoda from the tadkeshwar lignite mine, Camba Basin, Gujarat. J. Geol. Soc. India 81, 514–520 (2013).

    Google Scholar 

  • 75.

    Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).

    CAS  PubMed  Google Scholar 

  • 76.

    Donoghue, P. C. J. & Benton, M. J. Rocks and clocks: Calibrating the tree of life using fossils and molecules. Trends Ecol. Evol. 22, 424–431 (2007).

    PubMed  Google Scholar 

  • 77.

    Ho, S. Y. W. & Phillips, M. J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367–380 (2009).

    PubMed  Google Scholar 

  • 78.

    Graur, D. & Martin, W. Reading the entails of chickens: Molecular timescales of evolution and the illusion of precision. Trends Genet. 20, 80–86 (2004).

    CAS  PubMed  Google Scholar 

  • 79.

    Reisz, R. R. & Müller, J. Molecular timescales and the fossil record: A paleontological perspective. Trends Genet. 20, 237–241 (2004).

    CAS  PubMed  Google Scholar 

  • 80.

    Palmer, J. D. Plastid chromosome, structure and evolution. In The Molecular Biology of Plastids (eds Bogorad, L. & Vasil, I. K.) 5–53 (Academic Press, Cambridge, 1991).

    Google Scholar 

  • 81.

    Villarreal, J. C. & Renner, S. S. Hornwort pyrenoids, a carbon-concentrating mechanism, evolved and were lost at least five times during the last 100 million years. Proc. Natl. Acad. Sci. U.S.A. 109, 18873–18878 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 82.

    Les, D. H., Crawford, D. J., Kimball, R. T., Moody, M. L. & Landolt, E. Biogeography of discontinuously distributed hydrophytes, a molecular appraisal of intercontinental disjunctions. Int. J. Plant Sci. 164, 917–932 (2003).

    Google Scholar 

  • 83.

    Villarreal, J. C. & Renner, S. S. A review of molecular-clock calibrations and substitution rates in liverworts, mosses, and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros. Mol. Phylogenet. Evol. 78, 25–35 (2014).

    PubMed  Google Scholar 

  • 84.

    Drummond, A. J., Ho, S. Y. M., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 85.

    Stadler, T. On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J. Theor. Biol. 261, 58–66 (2009).

    MathSciNet  PubMed  MATH  Google Scholar 

  • 86.

    Lartillot, N. & Philippe, H. Computing Bayes factor using thermodynamic integration. Syst. Biol. 55, 195–207 (2006).

    PubMed  Google Scholar 

  • 87.

    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).

    PubMed  Google Scholar 

  • 88.

    Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 89.

    Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinform. 14, 85 (2013).

    Google Scholar 

  • 90.

    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation in a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).

    PubMed  Google Scholar 

  • 91.

    Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).

    PubMed  Google Scholar 

  • 92.

    Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).

    Google Scholar 

  • 93.

    Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).

    PubMed  Google Scholar 

  • 94.

    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 95.

    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimation a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).

    PubMed  Google Scholar 

  • 96.

    FitzJohn, R. G. Diversitree: Comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).

    Google Scholar 

  • 97.

    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).

    CAS  PubMed  Google Scholar 

  • 98.

    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    PubMed  Google Scholar 

  • 99.

    Caetano, D. S., O’Meara, B. C. & Beaulieu, J. M. Hidden state models improve state-dependent diversification approaches, including biogeographical models. Evolution 72, 2308–2324 (2018).

    PubMed  Google Scholar 


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes