in

Differences in epidemic spread patterns of norovirus and influenza seasons of Germany: an application of optical flow analysis in epidemiology

  • 1.

    Iuliano, A. D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300. https://doi.org/10.1016/s0140-6736(17)33293-2 (2018).

    Article  PubMed  Google Scholar 

  • 2.

    Ahmed, S. M. et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect. Dis. 14, 725–730. https://doi.org/10.1016/s1473-3099(14)70767-4 (2014).

    Article  PubMed  Google Scholar 

  • 3.

    Robert-Koch-Institute (Germany). Infektionsepidemiologisches Jahrbuch für 2018.

  • 4.

    Saunders-Hastings, P. & Krewski, D. Reviewing the history of pandemic influenza: Understanding patterns of emergence and transmission. Pathogens 5, 66. https://doi.org/10.3390/pathogens5040066 (2016).

    Article  PubMed Central  Google Scholar 

  • 5.

    de Picoli Junior, S. et al. Spreading patterns of the influenza a (h1n1) pandemic. PLoS ONE 6, e17823. https://doi.org/10.1371/journal.pone.0017823 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J. & Naumova, E. N. Influenza seasonality: Underlying causes and modeling theories. J. Virol. 81, 5429–5436. https://doi.org/10.1128/jvi.01680-06 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Bjørnstad, O. N. & Viboud, C. Timing and periodicity of influenza epidemics. Proc. Natl. Acad. Sci. 113, 12899–12901. https://doi.org/10.1073/pnas.1616052113 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Liu, X.-X. et al. Seasonal pattern of influenza activity in a subtropical city, China, 2010–2015. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-17806-z (2017).

  • 9.

    Bozick, B. A. & Real, L. A. The role of human transportation networks in mediating the genetic structure of seasonal influenza in the united states. PLOS Pathog. 11, e1004898. https://doi.org/10.1371/journal.ppat.1004898 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Dahlgren, F. S. et al. Patterns of seasonal influenza activity in U.S. core-based statistical areas, described using prescriptions of oseltamivir in medicare claims data. Epidemics 26, 23–31. https://doi.org/10.1016/j.epidem.2018.08.002 (2019).

    Article  PubMed  Google Scholar 

  • 11.

    Lopman, B. et al. Increase in viral gastroenteritis outbreaks in europe and epidemic spread of new norovirus variant. Lancet 363, 682–688. https://doi.org/10.1016/s0140-6736(04)15641-9 (2004).

    Article  PubMed  Google Scholar 

  • 12.

    Bloom-Feshbach, K. et al. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): A global comparative review. PLoS ONE 8, e54445. https://doi.org/10.1371/journal.pone.0054445 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Ahmed, S. M., Lopman, B. A. & Levy, K. A systematic review and meta-analysis of the global seasonality of norovirus. PLoS ONE 8, e75922. https://doi.org/10.1371/journal.pone.0075922 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Petrova, V. N. & Russell, C. A. The evolution of seasonal influenza viruses. Nat Rev Microbiol 16, 47–60. https://doi.org/10.1038/nrmicro.2017.118 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Su, S., Fu, X., Li, G., Kerlin, F. & Veit, M. Novel influenza d virus: Epidemiology, pathology, evolution and biological characteristics. Virulence 8, 1580–1591. https://doi.org/10.1080/21505594.2017.1365216 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4.. Geosci. Model Dev. 8, 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015 (2015).

    ADS  Article  Google Scholar 

  • 17.

    BKG. Geobasis-de/bkg dl-de/by-2-0. Database. http://www.bkg.bund.de (2019).

  • 18.

    OriginLab Corporation, Northampton. Origin(Pro) 2019b. Website https://www.originlab.com/ (2019).

  • 19.

    Rajao, D. S., Vincent, A. L. & Perez, D. R. Adaptation of human influenza viruses to swine. Front. Vet. Sci. 5, https://doi.org/10.3389/fvets.2018.00347 (2019).

  • 20.

    Brankston, G., Gitterman, L., Hirji, Z., Lemieux, C. & Gardam, M. Transmission of influenza a in human beings. Lancet Infect. Dis. 7, 257–265. https://doi.org/10.1016/s1473-3099(07)70029-4 (2007).

    Article  PubMed  Google Scholar 

  • 21.

    Ward, J. W. Twelve diseases that changed our world. Emerg. Infect. Dis. 14, 866a–8866. https://doi.org/10.3201/eid1405.080072 (2008).

    Article  Google Scholar 

  • 22.

    Rao, S., Nyquist, A.-C. & Stillwell, P. C. 27 – influenza. In Wilmott, R. W. et al. (eds.) Kendig’s Disorders of the Respiratory Tract in Children (Ninth Edition), 460–465, https://doi.org/10.1016/B978-0-323-44887-1.00027-4 (2019).

  • 23.

    Pauly, M. D., Procario, M. & Lauring, A. S. The mutation rates and mutational bias of influenza a virus. eLifehttps://doi.org/10.1101/110197 (2017).

  • 24.

    Gregorio, E. D. & Rappuoli, R. From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat. Rev. Immunol. 14, 505–514. https://doi.org/10.1038/nri3694 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Shah, M. P. & Hall, A. J. Norovirus illnesses in children and adolescents. Infect. Dis. Clin. N. Am. 32, 103–118. https://doi.org/10.1016/j.idc.2017.11.004 (2018).

    Article  Google Scholar 

  • 26.

    Patel, M. M. et al. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14, 1224–31. https://doi.org/10.3201/eid1408.071114 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Lanata, C. F. et al. Global causes of diarrheal disease mortality in children<5 years of age: a systematic review. PLoS One 8, e72788. https://doi.org/10.1371/journal.pone.0072788 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Pires, S. M. et al. Aetiology-specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food. PLoS One 10, e0142927. https://doi.org/10.1371/journal.pone.0142927 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    de Graaf, M., van Beek, J. & Koopmans, M. P. G. Human norovirus transmission and evolution in a changing world. Nat Rev Microbiol 14, 421–33. https://doi.org/10.1038/nrmicro.2016.48 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Verhoef, L. et al. Norovirus genotype profiles associated with foodborne transmission, 1999–2012. Emerg Infect Dis 21, 592–9. https://doi.org/10.3201/eid2104.141073 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Koch J, S. K. S. E., Schneider T. Norovirusinfektionen in Deutschland. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 49, 296–309 (2006).

  • 32.

    Teunis, P. F. et al. Norwalk virus: how infectious is it?. J. Med. Virol. 80, 1468–76. https://doi.org/10.1002/jmv.21237 (2008).

    Article  PubMed  Google Scholar 

  • 33.

    O’Brien, S. J., Sanderson, R. A. & Rushton, S. P. Control of norovirus infection. Curr. Opin. Gastroenterol. 35, 14–19. https://doi.org/10.1097/mog.0000000000000491 (2019).

  • 34.

    Victoria, M. et al. Bayesian coalescent inference reveals high evolutionary rates and expansion of norovirus populations. Infect. Genet. Evolut. 9, 927–932. https://doi.org/10.1016/j.meegid.2009.06.014 (2009).

    CAS  Article  Google Scholar 

  • 35.

    Parra, G. I. et al. Static and evolving norovirus genotypes: Implications for epidemiology and immunity. PLoS Pathog 13, e1006136. https://doi.org/10.1371/journal.ppat.1006136 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Bull, R. A., Eden, J.-S., Rawlinson, W. D. & White, P. A. Rapid evolution of pandemic noroviruses of the gii.4 lineage. PLoS Pathog 6, e1000831. https://doi.org/10.1371/journal.ppat.1000831 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Siebenga, J. J. et al. Norovirus illness is a global problem: Emergence and spread of norovirus GII.4 variants, 2001–2007. J. Infect. Dis. 200, 802–812. https://doi.org/10.1086/605127 (2009).

    Article  PubMed  Google Scholar 

  • 38.

    Bartsch, S. M., Lopman, B. A., Ozawa, S., Hall, A. J. & Lee, B. Y. Global economic burden of norovirus gastroenteritis. PLoS One 11, e0151219. https://doi.org/10.1371/journal.pone.0151219 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Koo, H. L., Ajami, N., Atmar, R. L. & DuPont, H. L. Noroviruses: The leading cause of gastroenteritis worldwide. Discov Med 10, 61–70 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Koch-Institut, R. Survstat@rki 2.0. Database. https://www.rki.de/DE/Content/Infekt/SurvStat/survstat_node.html (2019).

  • 41.

    (Destatis), S. B. Database. https://www.destatis.de/EN/Home/_node.html (2019).

  • 42.

    Charu, V. et al. Human mobility and the spatial transmission of influenza in the united states. PLOS Comput. Biol. 13, e1005382. https://doi.org/10.1371/journal.pcbi.1005382 (2017).

    MathSciNet  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Coletti, P., Poletto, C., Turbelin, C., Blanchon, T. & Colizza, V. Shifting patterns of seasonal influenza epidemics. Sci. Rep. 8, https://doi.org/10.1038/s41598-018-30949-x (2018).

  • 44.

    Yeargin, T., Buckley, D., Fraser, A. & Jiang, X. The survival and inactivation of enteric viruses on soft surfaces: A systematic review of the literature. Am. J. Infect. Control 44, 1365–1373. https://doi.org/10.1016/j.ajic.2016.03.018 (2016).

    Article  PubMed  Google Scholar 

  • 45.

    Tuladhar, E. et al. Reducing viral contamination from finger pads: handwashing is more effective than alcohol-based hand disinfectants. J. Hosp. Infect. 90, 226–234. https://doi.org/10.1016/j.jhin.2015.02.019 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5, e74. https://doi.org/10.1371/journal.pmed.0050074 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Cardemil, C. V., Parashar, U. D. & Hall, A. J. Norovirus infection in older adults. Infect. Dis. Clin. N. Am. 31, 839–870. https://doi.org/10.1016/j.idc.2017.07.012 (2017).

    Article  Google Scholar 

  • 48.

    Galanti, M. et al. Rates of asymptomatic respiratory virus infection across age groups. Epidemiol. Infect. 147, https://doi.org/10.1017/s0950268819000505 (2019).

  • 49.

    Robert-Koch-Institute (Germany). Bericht zur Epidemiologie der Influenza in Deutschland, Saison 2009/10.

  • 50.

    Robert-Koch-Institute (Germany). Bericht zur Epidemiologie der Influenza in Deutschland, Saison 2012/13.

  • 51.

    Robert-Koch-Institute (Germany). Bericht zur Epidemiologie der Influenza in Deutschland, Saison 2014/15.

  • 52.

    Robert-Koch-Institute (Germany). Bericht zur Epidemiologie der Influenza in Deutschland, Saison 2018/19. https://doi.org/10.25646/6232.

  • 53.

    Hayes, C. E., Nashold, F. E., Spach, K. M. & Pedersen, L. B. The immunological functions of the vitamin D endocrine system. Cell. Mol. Biol. (Noisy-le-grand) 49, 277–300 (2003).

    CAS  Google Scholar 

  • 54.

    Cox, N. J. & Subbarao, K. Seminar: Influenza. Lancet 354, 1277–1282 (1999).

    CAS  Article  Google Scholar 

  • 55.

    Robert-Koch-Institute (Germany). Infektionsepidemiologisches Jahrbuch für 2009.

  • 56.

    Robert-Koch-Institute (Germany). Epidemiologisches Bulletin No 19, 2014.

  • 57.

    Mena, I. et al. Origins of the 2009 h1n1 influenza pandemic in swine in mexico. eLife 5, https://doi.org/10.7554/elife.16777 (2016).

  • 58.

    van Beek, J. et al. Indications for worldwide increased norovirus activity associated with emergence of a new variant of genotype ii.4, late 2012. Euro Surveill. 1, 18, https://doi.org/10.2807/ese.18.01.20345-en (2013).

  • 59.

    Grunow, R. & Finke, E.-J. A procedure for differentiating between the intentional release of biological warfare agents and natural outbreaks of disease: Its use in analyzing the tularemia outbreak in Kosovo in 1999 and 2000. Clin Microbiol Infect 8, 510–21 (2002).

    CAS  Article  Google Scholar 

  • 60.

    Fraas, S., Stegmaier, T., Himmel, M. & Oellingrath, E. Influenza and norovirus incidence and optical flow activity video material for 2008–2018. figsharehttps://figshare.com/articles/Influenza_and_Norovirus_Incidence_and_Optical_Flow_activity_video_material_for_2008-2018/11777349/1, https://doi.org/10.6084/M9.FIGSHARE.11777349.V1 (2020).

  • 61.

    González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782. https://doi.org/10.1038/nature06958 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 62.

    Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95. https://doi.org/10.1109/MCSE.2007.55 (2007).

    Article  Google Scholar 

  • 63.

    Burri, O., Guiet, R. & Seitz, A. Digital Image Analysis (Wiley, Chichester, 2016).

    Google Scholar 

  • 64.

    Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, https://doi.org/10.1186/s12859-017-1934-z (2017).

  • 65.

    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Agarwal, A., Gupta, S. & Singh, D. K. Review of optical flow technique for moving object detection. In 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), https://doi.org/10.1109/ic3i.2016.7917999 (IEEE, 2016).

  • 67.

    Fortun, D., Bouthemy, P. & Kervrann, C. Optical flow modeling and computation: A survey. Comput. Vis. Image Understand. 134, 1–21. https://doi.org/10.1016/j.cviu.2015.02.008 (2015).

    Article  MATH  Google Scholar 


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes