in

Bimodal diel pattern in peatland ecosystem respiration rebuts uniform temperature response

  • 1.

    Turunen, J., Tomppo, E., Tolonen, K. & Reinikainen, A. Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. Holocene 12, 69–80 (2002).

    ADS  Google Scholar 

  • 2.

    Gorham, E. Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).

    PubMed  Google Scholar 

  • 3.

    Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).

    ADS  Google Scholar 

  • 4.

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    ADS  Google Scholar 

  • 5.

    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (2014).

    CAS  Google Scholar 

  • 6.

    Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).

    ADS  CAS  Google Scholar 

  • 7.

    Nijp, J. J. et al. Rain events decrease boreal peatland net CO2 uptake through reduced light availability. Glob. Change Biol. 21, 2309–2320 (2015).

    ADS  Google Scholar 

  • 8.

    Petrescu, A. M. R. et al. The uncertain climate footprint of wetlands under human pressure. Proc. Natl Acad. Sci. USA. 112, 4594–4599 (2015).

    ADS  PubMed  Google Scholar 

  • 9.

    Wu, J. & Roulet, N. T. Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: the different responses of bogs and fens. Glob. Biogeochem. Cycles 28, 1005–1024 (2014).

    ADS  CAS  Google Scholar 

  • 10.

    Wang, X. et al. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Glob. Change Biol. 20, 3229–3237 (2014).

    ADS  Google Scholar 

  • 11.

    Mäkiranta, P. et al. Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biol. Biochem. 41, 695–703 (2009).

    Google Scholar 

  • 12.

    Bond-Lamberty, B., Wang, C. & Gower, S. T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob. Change Biol. 10, 1756–1766 (2004).

    ADS  Google Scholar 

  • 13.

    Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M. & Peichl, M. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland. Glob. Change Biol. 24, 3436–3451 (2018).

    ADS  Google Scholar 

  • 14.

    Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315 (1994).

    Google Scholar 

  • 15.

    van’t Hoff, J. H. Lectures on theoretical and physical chemistry: chemical dynamics. Part I (Edward Arnold, London, 1898).

  • 16.

    Arrhenius, S. Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren. Z. f.ür. Phys. Chem. 4, 226–248 (1889).

    Google Scholar 

  • 17.

    Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    ADS  Google Scholar 

  • 18.

    Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 16, 187–208 (2010).

    ADS  Google Scholar 

  • 19.

    Lasslop, G. et al. On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning. Biogeosciences 9, 5243–5259 (2012).

    ADS  CAS  Google Scholar 

  • 20.

    Wohlfahrt, G. & Galvagno, M. Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning. Agric. Meteorol. 237–238, 135–142 (2017).

    Google Scholar 

  • 21.

    Phillips, S. C. et al. Interannual, seasonal, and diel variation in soil respiration relative to ecosystem respiration at a wetland to upland slope at Harvard Forest. J. Geophys. Res. Biogeosciences 115, G02019 (2010).

  • 22.

    Savage, K., Davidson, E. A. & Tang, J. Diel patterns of autotrophic and heterotrophic respiration among phenological stages. Glob. Change Biol. 19, 1151–1159 (2013).

    ADS  CAS  Google Scholar 

  • 23.

    Thorne, R., Khomik, M., Hayman, E. & Arain, A. Response of soil CO2 efflux to shelterwood harvesting in a mature temperate pine forest. Forests 11, 304 (2020).

    Google Scholar 

  • 24.

    Carbone, M. S., Winston, G. C. & Trumbore, S. E. Soil respiration in perennial grass and shrub ecosystems: linking environmental controls with plant and microbial sources on seasonal and diel timescales. J. Geophys. Res. Biogeosciences 113, G02022 (2008).

  • 25.

    Keane, J. Ben & Ineson, P. Technical note: differences in the diurnal pattern of soil respiration under adjacent Miscanthus × giganteus and barley crops reveal potential flaws in accepted sampling strategies. Biogeosciences 14, 1181–1187 (2017).

    ADS  CAS  Google Scholar 

  • 26.

    Wutzler, T. et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15, 5015–5030 (2018).

    ADS  CAS  Google Scholar 

  • 27.

    Luo, Y. & Zhou, X. Soil respiration and the environment. (Academic Press, An Imprint of Elsevier Science, London, 2006).

  • 28.

    Hoffmann, M. et al. Automated modeling of ecosystem CO2 fluxes based on periodic closed chamber measurements: a standardized conceptual and practical approach. Agric. Meteorol. 200, 30–45 (2015).

    Google Scholar 

  • 29.

    Rochette, P. & Hutchinson, G. Measurement of soil respiration in situ: chamber techniques. in Micrometeorology in agricultural systems, Agron. Monogr. 47 (ASA, CSSA and SSSA, Madison, WI 2005).

  • 30.

    Peichl, M. et al. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ. Res. Lett. 9, 055006 (2014).

    ADS  Google Scholar 

  • 31.

    Nilsson, M. et al. Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C-fluxes. Glob. Change Biol. 14, 2317–2332 (2008).

    ADS  Google Scholar 

  • 32.

    Qiu, C. et al. ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales. Geosci. Model Dev. 11, 497–519 (2018).

    ADS  CAS  Google Scholar 

  • 33.

    Abdalla, M. et al. Simulation of CO2 and attribution analysis at Six European Peatland sites using the ECOSSE model. Water, Air, Soil Pollut. 225, 2182 (2014).

    ADS  Google Scholar 

  • 34.

    Metzger, C., Nilsson, M. B., Peichl, M. & Jansson, P.-E. Parameter interactions and sensitivity analysis for modelling carbon heat and water fluxes in a natural peatland, using CoupModel v5. Geosci. Model Dev. 9, 4313–4338 (2016).

    ADS  CAS  Google Scholar 

  • 35.

    Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).

    Google Scholar 

  • 36.

    Ai, J. et al. MODIS-based estimates of global terrestrial ecosystem respiration. J. Geophys. Res. Biogeosciences 123, 326–352 (2018).

    ADS  Google Scholar 

  • 37.

    Xiao, J. et al. Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years. Remote Sens. Environ. 233, 111383 (2019).

  • 38.

    Badawy, B., Arora, V. K., Melton, J. R. & Nassar, R. Modeling the diurnal variability of respiratory fluxes in the Canadian Terrestrial Ecosystem Model (CTEM). J. Adv. Model. Earth Syst. 8, 614–633 (2016).

    ADS  Google Scholar 

  • 39.

    Wu, Y., Verseghy, D. L. & Melton, J. R. Integrating peatlands into the coupled Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial Ecosystem Model (CTEM) v2.0. Geosci. Model Dev. 9, 2639–2663 (2016).

    ADS  CAS  Google Scholar 

  • 40.

    Waddington, J. M., Rotenberg, P. A. & Warren, F. J. Peat CO2 production in a natural and cutover peatland: implications for restoration. Biogeochemistry 54, 115–130 (2001).

    CAS  Google Scholar 

  • 41.

    Glatzel, S., Basiliko, N. & Moore, T. Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands 24, 261–267 (2004).

    Google Scholar 

  • 42.

    Hoyos-Santillan, J. et al. Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biol. Biochem. 103, 86–96 (2016).

    CAS  Google Scholar 

  • 43.

    Moore, T. R. & Dalva, M. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol. Biochem. 29, 1157–1164 (1997).

    CAS  Google Scholar 

  • 44.

    Nilsson, M. & Öquist, M. Partitioning litter mass loss into carbon dioxide and methane in peatland ecosystems. in Carbon Cycling in Northern Peatlands (American Geophysical Union, Washington, DC, 2009).

  • 45.

    Blodau, C., Basiliko, N. & Moore, T. R. Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67, 331–351 (2004).

    CAS  Google Scholar 

  • 46.

    D’Angelo, B. et al. Soil temperature synchronisation improves representation of diel variability of ecosystem respiration in Sphagnum peatlands. Agric. Meteorol. 223, 95–102 (2016).

    Google Scholar 

  • 47.

    Phillips, C. L., Nickerson, N., Risk, D. & Bond, B. J. Interpreting diel hysteresis between soil respiration and temperature. Glob. Change Biol. 17, 515–527 (2011).

    ADS  Google Scholar 

  • 48.

    Chapin, F. S. III, Matson, P. A. & Mooney, H. A. Carbon input to terrestrial ecosystems. in principles of terrestrial ecosystem. Ecology. (Springer, New York, NY, 2002).

    Google Scholar 

  • 49.

    Vargas, R. & Allen, M. F. Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration. N. Phytol. 179, 460–471 (2008).

    CAS  Google Scholar 

  • 50.

    Bahn, M., Schmitt, M., Siegwolf, R., Richter, A. & Brüggemann, N. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? N. Phytol. 182, 451–460 (2009).

    CAS  Google Scholar 

  • 51.

    Laine, A. M. et al. Abundance and composition of plant biomass as potential controls for mire net ecosytem CO2 exchange. Botany 90, 63–74 (2012).

    CAS  Google Scholar 

  • 52.

    Goulden, M. L. & Crill, P. M. Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiol. 17, 537–542 (1997).

    CAS  PubMed  Google Scholar 

  • 53.

    Bubier, J., Crill, P., Mosedale, A., Frolking, S. & Linder, E. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Glob. Biogeochem. Cycles 17, 1066 (2003).

    ADS  Google Scholar 

  • 54.

    Bond-Lamberty, B., Bronson, D., Bladyka, E. & Gower, S. T. A comparison of trenched plot techniques for partitioning soil respiration. Soil Biol. Biochem. 43, 2108–2114 (2011).

    CAS  Google Scholar 

  • 55.

    Lai, D. Y. F., Roulet, N. T., Humphreys, E. R., Moore, T. R. & Dalva, M. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosciences 9, 3305–3322 (2012).

    ADS  CAS  Google Scholar 

  • 56.

    Brændholt, A., Larsen, K. S., Ibrom, A. & Pilegaard, K. Overestimation of closed-chamber soil CO2 effluxes at low atmospheric turbulence. Biogeosciences 14, 1603–1616 (2017).

    ADS  Google Scholar 

  • 57.

    Peichl, M., Sonnentag, O. & Nilsson, M. B. Bringing color into the picture: using digital repeat photography to investigate phenology controls of the carbon dioxide exchange in a boreal mire. Ecosystems 18, 115–131 (2015).

    CAS  Google Scholar 

  • 58.

    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).

    ADS  Google Scholar 

  • 59.

    Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    A national macroinvertebrate dataset collected for the biomonitoring of Ireland’s river network, 2007–2018

    Author Correction: Global status and conservation potential of reef sharks