in

Host age is not a consistent predictor of microbial diversity in the coral Porites lutea

  • 1.

    Pootakham, W. et al. Dynamics of coral-associated microbiomes during a thermal bleaching event. Microbiologyopen 7, e00604 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Krediet, C. J., Ritchie, K. B., Paul Valerie, J. & Max, T. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. R. Soc. B Biol. Sci. 280, 20122328 (2013).

    Google Scholar 

  • 3.

    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: The key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).

    PubMed  Google Scholar 

  • 5.

    Ritchie, K. B. & Smith, G. W. Microbial communities of coral surface mucopolysaccharide layers. In Coral Health and Disease (eds Rosenberg, E. & Loya, Y.) 259–264 (Springer, Berlin Heidelberg, 2004).

    Google Scholar 

  • 6.

    Holm, J. B. & Heidelberg, K. B. Microbiomes of Muricea californica and M. fruticosa: Comparative analyses of two co-occurring eastern pacific octocorals. Front. Microbiol. 7, 917 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Sweet, M. J., Brown, B. E., Dunne, R. P., Singleton, I. & Bulling, M. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs 36, 815–828 (2017).

    ADS  Google Scholar 

  • 8.

    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 105, 629–640 (2016).

    CAS  PubMed  Google Scholar 

  • 9.

    Archer, S. D. J. et al. Air mass source determines airborne microbial diversity at the ocean–atmosphere interface of the Great Barrier Reef marine ecosystem. ISME J. https://doi.org/10.1038/s41396-019-0555-0 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Wainwright, B. J., Afiq-Rosli, L., Zahn, G. L. & Huang, D. Characterisation of coral-associated bacterial communities in an urbanised marine environment shows strong divergence over small geographic scales. Coral Reefs https://doi.org/10.1007/s00338-019-01837-1 (2019).

    Article  Google Scholar 

  • 11.

    Chu, N. D. & Vollmer, S. V. Caribbean corals house shared and host-specific microbial symbionts over time and space. Environ. Microbiol. Rep. 8, 493–500 (2016).

    CAS  PubMed  Google Scholar 

  • 12.

    Wainwright, B. J., Bauman, A. G., Zahn, G. L., Todd, P. A. & Huang, D. Characterization of fungal biodiversity and communities associated with the reef macroalga Sargassum ilicifolium reveals fungal community differentiation according to geographic locality and algal structure. Mar. Biodivers. https://doi.org/10.1007/s12526-019-00992-6 (2019).

    Article  Google Scholar 

  • 13.

    Wainwright, B. J., Zahn, G. L., Arlyza, I. S. & Amend, A. S. Seagrass-associated fungal communities follow Wallace’s line, but host genotype does not structure fungal community. J. Biogeogr. 45, 762–770 (2018).

    Google Scholar 

  • 14.

    Hernandez-Agreda, A., Leggat, W., Bongaerts, P., Herrera, C. & Ainsworth, T. D. Rethinking the coral microbiome: Simplicity exists within a diverse microbial biosphere. mBio 9, e00812 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Williams, A. D., Brown, B. E., Putchim, L. & Sweet, M. J. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE 10, e0144902 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Epstein, H. E., Torda, G., Munday, P. L. & van Oppen, M. J. H. Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J. 13, 1635–1638 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    van Dongen, W. F. et al. Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol. 13, 11 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Huang, D. et al. Extraordinary diversity of reef corals in the South China Sea. Mar. Biodivers. 45, 157–168 (2015).

    Google Scholar 

  • 21.

    Toda, T. et al. Community structures of coral reefs around Peninsular Malaysia. J. Oceanogr. 63, 113–123 (2007).

    Google Scholar 

  • 22.

    Tanzil, J. T. I. et al. Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob. Change Biol. 19, 3011–3023 (2013).

    ADS  Google Scholar 

  • 23.

    Tanzil, J. T. I. et al. Luminescence and density banding patterns in massive Porites corals around the Thai-Malay Peninsula, Southeast Asia. Limnol. Oceanogr. 61, 2003–2026 (2016).

    ADS  Google Scholar 

  • 24.

    Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Øvreås, L., Daae, F. L., Torsvik, V. & Rodríguez-Valera, F. Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb. Ecol. 46, 291–301 (2003).

    PubMed  Google Scholar 

  • 26.

    Baker, B. J. & Banfield, J. F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 44, 139–152 (2003).

    CAS  PubMed  Google Scholar 

  • 27.

    Li, S.-J. et al. Microbial communities evolve faster in extreme environments. Sci. Rep. 4, 6205 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Peter, J. et al. A microbial signature of psychological distress in irritable bowel syndrome. Psychosom. Med. 80, 698–709 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Karl, J. P. et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Guest, J. R. et al. 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Sci. Rep. 6, 36260 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Wong, J. S. Y. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).

    ADS  MathSciNet  Google Scholar 

  • 32.

    Chow, G. S. E., Chan, Y. K. S., Jain, S. S. & Huang, D. Light limitation selects for depth generalists in urbanised reef coral communities. Mar. Environ. Res. 147, 101–112 (2019).

    CAS  PubMed  Google Scholar 

  • 33.

    Calvani, R. et al. Of microbes and minds: A narrative review on the second brain aging. Front. Med. (Lausanne) https://doi.org/10.3389/fmed.2018.00053 (2018).

    Article  Google Scholar 

  • 34.

    Nagpal, R. et al. Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging 4, 267–285 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Choi, J., Hur, T.-Y. & Hong, Y. Influence of altered gut microbiota composition on aging and aging-related diseases. J. Lifestyle Med. 8, 1–7 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Soong, K., Chen, C. A. & Chang, J.-C. A very large poritid colony at Green Island, Taiwan. Coral Reefs 18, 42–42 (1999).

    Google Scholar 

  • 37.

    Goodkin, N. et al. Coral communities of Hong Kong: Long-lived corals in a marginal reef environment. Mar. Ecol. Prog. Ser. 426, 185–196 (2011).

    ADS  Google Scholar 

  • 38.

    Bythell, J. C., Brown, B. E. & Kirkwood, T. B. L. Do reef corals age?. Biol. Rev. 93, 1192–1202 (2018).

    PubMed  Google Scholar 

  • 39.

    Lee, N. L. Y., Huang, D., Quek, Z. B. R., Lee, J. N. & Wainwright, B. J. Mangrove-associated fungal communities are differentiated by geographic location and host structure. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Wainwright, B. J. et al. Seagrass-associated fungal communities show distance decay of similarity that has implications for seagrass management and restoration. Ecol. Evol. 9, 11288–11297 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Röthig, T., Ochsenkühn, M. A., Roik, A., van der Merwe, R. & Voolstra, C. R. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol. Ecol. 25, 1308–1323 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Sin, T. M. et al. The urban marine environment of Singapore. Region. Stud. Mar. Sci. 8, 331–339 (2016).

    Google Scholar 

  • 43.

    Chénard, C. et al. Temporal and spatial dynamics of bacteria, Archaea and protists in equatorial coastal waters. Sci. Rep. 9, 1–13 (2019).

    Google Scholar 

  • 44.

    Ford, A. K. et al. Reefs under Siege—The rise, putative drivers, and consequences of benthic cyanobacterial mats. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00018 (2018).

    Article  Google Scholar 

  • 45.

    Charpy, L., Casareto, B. E., Langlade, M. J. & Suzuki, Y. Cyanobacteria in coral reef ecosystems: A review. J. Mar. Biol. 2012, 1–9 (2012).

    Google Scholar 

  • 46.

    Huang, D., Tun, K., Chou, L. M. & Todd, P. A. An inventory of zooxanthellate scleractinian corals in Singapore, including 33 new records. Raffles Bull. Zool. Suppl. 22, 69 (2009).

    CAS  Google Scholar 

  • 47.

    Todd, P. A. et al. Towards an urban marine ecology: Characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos https://doi.org/10.1111/oik.05946 (2019).

    Article  Google Scholar 

  • 48.

    Rubin, B. E. R. et al. Investigating the impact of storage conditions on microbial community composition in soil samples. PLoS ONE 8, e70460 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. & Fierer, N. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples: Influence of short-term storage conditions on microbiota. FEMS Microbiol. Lett. 307, 80–86 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Carruthers, L. V. et al. The impact of storage conditions on human stool 16S rRNA microbiome composition and diversity. PeerJ 7, e8133 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Veron, J. Corals of the World (Australian Institute of Marine Science, Townsville, 2000).

    Google Scholar 

  • 52.

    Forsman, Z., Wellington, G. M., Fox, G. E. & Toonen, R. J. Clues to unraveling the coral species problem: Distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits. PeerJ 3, e751 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Forsman, Z. H., Barshis, D. J., Hunter, C. L. & Toonen, R. J. Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol. Biol. 9, 45 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Terraneo, T. I. et al. Environmental latitudinal gradients and host-specificity shape Symbiodiniaceae distribution in Red Sea Porites corals. J. Biogeogr. https://doi.org/10.1111/jbi.13672 (2019).

    Article  Google Scholar 

  • 55.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516–4522 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 56.

    Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).

    CAS  PubMed  Google Scholar 

  • 57.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Google Scholar 

  • 58.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Cole, J. R. et al. The ribosomal database project (RDP-II): Introducing myRDP space and quality controlled public data. Nucleic Acids Res. 35, D169–D172 (2007).

    CAS  PubMed  Google Scholar 

  • 61.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Oksanen, J. et al. vegan: Community Ecology Package (2019).

  • 63.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Martin, B. D., Witten, D. & Willis, A. D. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann. Appl. Stat. 14, 94–115 (2020).

    MathSciNet  MATH  Google Scholar 


  • Source: Ecology - nature.com

    Six strategic areas identified for shared faculty hiring in computing

    Weather and biotic interactions as determinants of seasonal shifts in abundance measured through nest-box occupancy in the Siberian flying squirrel