in

Identifying priority habitat for conservation and management of Australian humpback dolphins within a marine protected area

  • 1.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    ADS  PubMed  CAS  Google Scholar 

  • 2.

    Wallace, B. P. et al. Global conservation priorities for marine turtles. PLoS ONE 6, e24510 (2011).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 3.

    Davidson, A. D. et al. Drivers and hotspots of extinction risk in marine mammals. Proc. Natl. Acad. Sci. USA 109, 3395–3400 (2012).

    ADS  PubMed  CAS  Google Scholar 

  • 4.

    Dulvy, N.K., et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, e00590 (2014).

  • 5.

    Slooten, E. & Davies, N. Hector’s dolphin risk assessments: old and new analyses show consistent results. J. R. Soc. NZ 42, 49–60 (2012).

    Google Scholar 

  • 6.

    Cagnazzi, D., Parra, G. J., Westley, S. & Harrison, P. L. At the heart of the industrial boom: Australian snubfin dolphins in the Capricorn Coast, Queensland, need urgent conservation action. PLoS ONE 8, e56729 (2013).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 7.

    Parra, G. J. & Cagnazzi, D. Conservation status of the Australian humpback dolphin (Sousa sahulensis) using the IUCN Red List criteria. Adv. Mar. Biol. 73, 157–192 (2016).

    PubMed  Google Scholar 

  • 8.

    Turvey, S. T. et al. First human-caused extinction of a cetacean species?. Biol. Lett. 3, 537–540 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Taylor, B. L. et al. Extinction is imminent for Mexico’s endemic porpoise unless fishery bycatch is eliminated. Conserv. Lett. 10, 588–595 (2017).

    Google Scholar 

  • 10.

    Gormley, A. M. et al. First evidence that marine protected areas can work for marine mammals. J. Appl. Ecol. 49, 474–480 (2012).

    Google Scholar 

  • 11.

    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216 (2014).

    ADS  PubMed  CAS  Google Scholar 

  • 12.

    Hoyt, E. Marine Protected Areas for Whales, Dolphins and Porpoises: A World Handbook for Cetacean Habitat Conservation and Planning 2nd edn. (Earthscan, London, 2011).

    Google Scholar 

  • 13.

    di Sciara, G. N. et al. Place-based approaches to marine mammal conservation. Aquat. Conserv. 26, 85–100 (2016).

    Google Scholar 

  • 14.

    Gregr, E. J., Baumgartner, M. F., Laidre, K. L. & Palacios, D. M. Marine mammal habitat models come of age: The emergence of ecological and management relevance. Endanger Species Res. 22, 205–212 (2013).

    Google Scholar 

  • 15.

    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Hooker, S. K. et al. Making protected area networks effective for marine top predators. Endanger Species Res. 13, 203–218 (2011).

    Google Scholar 

  • 17.

    Dryden, J., Grech, A., Moloney, J. & Hamann, M. Rezoning of the Great Barrier Reef World Heritage Area: Does it afford greater protection for marine turtles?. Wildl Res 35, 477–485 (2008).

    Google Scholar 

  • 18.

    Cleguer, C., Grech, A., Garrigue, C. & Marsh, H. Spatial mismatch between marine protected areas and dugongs in New Caledonia. Biol. Conserv. 184, 154–162 (2015).

    Google Scholar 

  • 19.

    Oh, B. Z. L., Sequeira, A. M. M., Meekan, M. G., Ruppert, J. L. W. & Meeuwig, J. J. Predicting occurrence of juvenile shark habitat to improve conservation planning. Conserv. Biol. 31, 635–645 (2017).

    PubMed  Google Scholar 

  • 20.

    Liu, M., Bejder, L., Lin, M., Zhang, P., Dong, L. & Li, S. Determining important habitats of the world’s second largest humpback dolphin population: Implications for place-based conservation and management. Aquat. Conserv. Mar. Freshw. Ecosyst. 1–11 https://doi.org/10.1002/aqc.3253 (2019).

  • 21.

    Tardin, R. H. et al. Modelling habitat use by the Guiana dolphin, Sotalia guianensis, in south-eastern Brazil: Effects of environmental and anthropogenic variables, and the adequacy of current management measures. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 775–786 (2020).

    Google Scholar 

  • 22.

    Worm, B. Marine conservation: How to heal an ocean. Nature 543, 630–631 (2017).

    ADS  PubMed  CAS  Google Scholar 

  • 23.

    Wood, L. J., Fish, L., Laughren, J. & Pauly, D. Assessing progress towards global marine protection targets: shortfalls in information and action. Oryx 42, 340–351 (2008).

    Google Scholar 

  • 24.

    Devillers, R. et al. Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection?. Aquat. Conserv. 25, 480–504 (2015).

    Google Scholar 

  • 25.

    Bottrill, M. C. & Pressey, R. L. The effectiveness and evaluation of conservation planning. Conserv. Lett. 5, 407–420 (2012).

    Google Scholar 

  • 26.

    Agardy, T. Justified ambivalence about MPA effectiveness. ICES J. Mar. Sci. 75, 1183–1185 (2018).

    Google Scholar 

  • 27.

    CALM & MPRA. Management Plan for the Ningaloo Marine Park and Muiron Islands Marine Management Area, 2005–2015. Western Australian Government Department of Conservation and Land Management, and Marine Parks and Reserve Authority, Perth, Western Australia (2005). https://www.dpaw.wa.gov.au/images/documents/parks/management-plans/decarchive/ningaloo_mp_01_2005_withmaps.pdf.

  • 28.

    UNESCO. United Nations Educational, Scientific and Cultural Organisation. Decisions adopted by the World Heritage Committee at its 35th session, Paris, 7 July 2011. WHC-11/35.COM/20 (2011). https://whc.unesco.org/en/decisions/4278.

  • 29.

    Hanf, D. M., Hunt, T. N. & Parra, G. J. Humpback dolphins of Western Australia: a review of current knowledge and recommendations for future management. Adv. Mar. Biol. 73, 193–218 (2016).

    PubMed  Google Scholar 

  • 30.

    Jefferson, T.A. & Rosenbaum, H.C. Taxonomic revision of the humpback dolphins (Sousa spp.), and description of a new species from Australia. Mar. Mamm. Sci. 30, 1494–1541 (2014).

  • 31.

    Parra, G. J., Corkeron, P. J. & Marsh, H. Population sizes, site fidelity and residence patterns of Australian snubfin and Indo-Pacific humpback dolphins: Implications for conservation. Biol. Conserv. 129, 167–180 (2006).

    Google Scholar 

  • 32.

    Cagnazzi, D. D. B., Harrison, P. L., Ross, G. J. B. & Lynch, P. Abundance and site fidelity of Indo-Pacific humpback dolphins in the Great Sandy Strait, Queensland, Australia. Mar. Mamm. Sci. 27, 255–281 (2011).

    Google Scholar 

  • 33.

    Palmer, C. et al. Estimates of abundance and apparent survival of coastal dolphins in Port Essington harbour, Northern Territory, Australia. Wildl. Res. 41, 35–45 (2014).

    Google Scholar 

  • 34.

    Brown, A. M., Bejder, L., Pollock, K. H. & Allen, S. J. Site-specific assessments of the abundance of three inshore dolphin species to inform conservation and management. Front. Mar. Sci. 3, 4. https://doi.org/10.3389/fmars.2016.00004 (2016).

    Article  Google Scholar 

  • 35.

    Brooks, L., Palmer, C., Griffiths, A. D. & Pollock, K. H. Monitoring variation in small coastal dolphin populations: An example from Darwin, Northern Territory, Australia. Front. Mar. Sci. 4, 94. https://doi.org/10.3389/fmars.2017.00094 (2017).

    Article  Google Scholar 

  • 36.

    Hunt, T. N. et al. Demographic characteristics of Australian humpback dolphins reveal important habitat toward the southwestern limit of their range. Endanger Species Res. 32, 71–88 (2017).

    Google Scholar 

  • 37.

    Brown, A. M. et al. Population differentiation and hybridisation of Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins in north-western Australia. PLoS ONE 9, e101427 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Parra, G. J. Resource partitioning in sympatric delphinids: space use and habitat preferences of Australian snubfin and Indo-Pacific humpback dolphins. J. Anim. Ecol. 75, 862–874 (2006).

    PubMed  Google Scholar 

  • 39.

    Parra, G., Cagnazzi, D., Perrin, W. & Braulik, G.T. Sousa sahulensis. The IUCN Red List of Threatened Species 2017: e.T82031667A82031671. https://www.iucnredlist.org/details/82031667/0. (2017).

  • 40.

    Hunt, T.N., Allen, S.J., Bejder, L. & Parra, G.J. Assortative interactions revealed in a fission-fusion society of Australian humpback dolphins. Behav Ecol 1–14. https://doi.org/10.1093/beheco/arz029 (2019).

  • 41.

    Hanf, D.M. Species Distribution Modelling of Western Pilbara Inshore Dolphins. MRes thesis. Murdoch University, Perth, Western Australia (2015).

  • 42.

    Allen, S. J., Cagnazzi, D. D., Hodgson, A. J., Loneragan, N. R. & Bejder, L. Tropical inshore dolphins of north-western Australia: Unknown populations in a rapidly changing region. Pac. Conserv. Biol. 18, 56–63 (2012).

    Google Scholar 

  • 43.

    Bejder, L., Hodgson, A., Loneragan, N. & Allen, S. J. Coastal dolphins in north-western Australia: The need for re-evaluation of species listings and short-comings in the Environmental Impact Assessment process. Pac. Conserv. Biol. 18, 22–25 (2012).

    Google Scholar 

  • 44.

    Rob, D. & Barnes, P. Whale Shark Management Annual Report: 2016 Whale Shark Season. Progress report for the Department of Parks and Wildlife, Wildlife Management Program No. 57. (2016). Report available on request.

  • 45.

    Brown, A., Bejder, .L, Cagnazzi, D., Parra, G.J. & Allen, S.J. The North West Cape, Western Australia: A potential hotspot for Indo-Pacific humpback dolphins Sousa chinensis? Pac Conserv Biol 18, 240–246 (2012).

  • 46.

    Raudino, H. C., Hunt, T. N. & Waples, K. Records of Australian humpback dolphins (Sousa sahulensis) from an offshore island group in Western Australia. Mar. Biodivers. Rec 11, 14. https://doi.org/10.1186/s41200-018-0147-0 (2018).

    Article  Google Scholar 

  • 47.

    Palmer, C., Parra, G. J., Rogers, T. & Woinarski, J. Collation and review of sightings and distribution of three coastal dolphin species in waters of the Northern Territory, Australia. Pac. Conserv. Biol. 20, 116–125 (2014).

    Google Scholar 

  • 48.

    Parra, G. J., Schick, R. & Corkeron, P. J. Spatial distribution and environmental correlates of Australian snubfin and Indo-Pacific humpback dolphins. Ecography 29, 396–406 (2006).

    Google Scholar 

  • 49.

    Cagnazzi, D. Conservation status of Australian snubfin dolphin, Orcaella heinsohni, and Indo-Pacific humpback dolphin, Sousa chinensis, in the Capricorn Coast, Central Queensland, Australia. PhD thesis. Southern Cross University, Lismore, Australia (2011).

  • 50.

    Cagnazzi, D. Review of coastal dolphins in central Queensland, particularly Port Curtis and Port Alma regions. Report produced for the Ecosystem Research and Monitoring Program Advisory Panel as part of Gladstone Ports Corporation’s Ecosystem Research and Monitoring Progra. Gladstone Ports Corporation, Queensland, Australia (2013).

  • 51.

    Beasley, I. et al. Observations on Australian humpback dolphins (Sousa sahulensis) in waters of the Pacific Islands and New Guinea. Adv. Mar. Biol. 73, 219–271 (2016).

    PubMed  Google Scholar 

  • 52.

    Corkeron, P. J., Morissette, N. M., Porter, L. & Marsh, H. Distribution and status of hump-backed dolphins, Sousa chinensis, Australian waters. Asian Mar. Biol. 14, 49–59 (1997).

    Google Scholar 

  • 53.

    Parra, G. J., Corkeron, P. J. & Marsh, H. The Indo-Pacific humpback dolphin, Sousa chinensis (Osbeck, 1765), in Australian waters: A summary of current knowledge. Aquat. Mamm. 30, 197–206 (2004).

    Google Scholar 

  • 54.

    Jefferson, T. A. & Curry, B. E. Humpback dolphins: A brief introduction to the genus Sousa. Adv. Mar. Biol. 72, 1–16 (2015).

    PubMed  Google Scholar 

  • 55.

    Koper, R. P., Karczmarski, L., du Preez, D. & Plön, S. Sixteen years later: Occurrence, group size, and habitat use of humpback dolphins (Sousa plumbea) in Algoa Bay, South Africa. Mar. Mamm. Sci. 32, 490–507 (2016).

    Google Scholar 

  • 56.

    Palmer, C. Conservation biology of dolphins in coastal waters of the Northern Territory, Australia. PhD thesis. Charles Darwin University, Northern Territory, Australia (2014).

  • 57.

    Heithaus, M. R. & Dill, L. M. Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83, 480–491 (2002).

    Google Scholar 

  • 58.

    Benoit-Bird, K. J. et al. Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies. PLoS ONE 8, e53348 (2013).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 59.

    Pirotta, E. et al. Predicting the effects of human developments on individual dolphins to understand potential long-term population consequences. Proc. R Soc. B 282, 20151209 (2015).

    Google Scholar 

  • 60.

    Parra, G. J. & Jedensjö, M. Stomach contents of Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback dolphins (Sousa chinensis). Mar. Mamm. Sci. 30, 1184–1198 (2014).

    Google Scholar 

  • 61.

    Downie, R. A., Babcock, R. C., Thomson, D. P. & Vanderklift, M. A. Density of herbivorous fish and intensity of herbivory are influenced by proximity to coral reefs. Mar. Ecol. Prog. Ser. 482, 217–225 (2013).

    ADS  Google Scholar 

  • 62.

    Fitzpatrick, B. M., Harvey, E. S., Langlois, T. J., Babcock, R. & Twiggs, E. Effects of fishing on fish assemblages at the reefscape scale. Mar. Ecol. Prog. Ser. 524, 241–253 (2015).

    ADS  Google Scholar 

  • 63.

    Smith, F., Allen, S. J., Bejder, L. & Brown, A. M. Shark bite injuries on three inshore dolphin species in tropical northwestern Australia. Mar. Mamm. Sci. 34, 87–99. https://doi.org/10.1111/mms.12435 (2017).

    Article  Google Scholar 

  • 64.

    Best, B. D. et al. Online cetacean habitat modeling system for the US east coast and Gulf of Mexico. Endanger Species Res. 18, 1–15 (2012).

    Google Scholar 

  • 65.

    Bancroft, K. & Sheridan, M. The major marine habitats of the Ningaloo Marine Park and the proposed southern extension. Marine Conservation Branch, Department of Conservation and Land Management, Perth, Western Australia. MMS/PI/NMP&NSE- 26/2000 (2000).

  • 66.

    Zanardo, N., Parra, G. J., Passadore, C. & Möller, L. M. Ensemble modelling of southern Australian bottlenose dolphin Tursiops sp. distribution reveals important habitats and their potential ecological function. Mar. Ecol. Prog. Ser. 569, 253–266 (2017).

  • 67.

    Palacios, D. M., Baumgartner, M. F., Laidre, K. L. & Gregr, E. J. Beyond correlation: integrating environmentally and behaviourally mediated processes in models of marine mammal distributions. Endanger Species Res. 22, 191–203 (2013).

    Google Scholar 

  • 68.

    Torres, L. G., Read, A. J. & Halpin, P. Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?. Ecol. Appl. 18, 1702–1717 (2008).

    PubMed  Google Scholar 

  • 69.

    Hastie, G. D., Wilson, B., Wilson, L. J., Parsons, K. M. & Thompson, P. M. Functional mechanisms underlying cetacean distribution patterns: hotspots for bottlenose dolphins are linked to foraging. Mar. Biol. 144, 397–403 (2004).

    Google Scholar 

  • 70.

    Hunt, T.N. Demography, habitat use and social structure of Australian humpback dolphins (Sousa sahulensis) around the North West Cape, Western Australia: Implications for conservation and management. PhD thesis. College of Science and Engineering, Flinders University, Adelaide, Australia (2018).

  • 71.

    Mitchell, J. D. et al. Quantifying shark depredation in a recreational fishery in the Ningaloo Marine Park and Exmouth Gulf, Western Australia. Mar. Ecol. Prog. Ser. 587, 141–157 (2018).

    ADS  Google Scholar 

  • 72.

    Smallwood, C. B., Beckley, L. E., Moore, S. A. & Kobryn, H. T. Assessing patterns of recreational use in large marine parks: A case study from Ningaloo Marine Park, Australia. Ocean Coast Manag 54, 330–340 (2011).

    Google Scholar 

  • 73.

    Great Sandy Marine Park Zoning Plan. Marine Parks (Great Sandy) Zoning Plan 2017. Marine Parks Act 2004. Queensland Government. https://www.legislation.qld.gov.au/view/pdf/inforce/current/sl-2017-0155 (2017).

  • 74.

    Smith, H., Frère, C., Kobryn, H. & Bejder, L. Dolphin sociality, distribution and calving as important behavioural patterns informing management. Anim. Conserv. 19, 462–471 (2016).

    Google Scholar 

  • 75.

    Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).

    Google Scholar 

  • 76.

    Davies, H. N. et al. Integrating climate change resilience features into the incremental refinement of an existing marine park. PLoS ONE 11, e0161094 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 77.

    Cassata, L. & Collins, L. B. Coral reef communities, habitats, and substrates in and near sanctuary zones of Ningaloo Marine Park. J. Coast Res. 24, 139–151 (2008).

    Google Scholar 

  • 78.

    Mann, J. Behavioral sampling methods for cetaceans: a review and critique. Mar. Mamm. Sci. 15, 102–122 (1999).

    Google Scholar 

  • 79.

    Connor, R. C., Mann, J., Tyack, P. L. & Whitehead, H. Social evolution in toothed whales. Trends Ecol. Evol. 13, 228–232 (1998).

    PubMed  CAS  Google Scholar 

  • 80.

    Redfern, J. et al. Techniques for cetacean–habitat modeling. Mar. Ecol. Prog. Ser. 310, 271–295 (2006).

    ADS  Google Scholar 

  • 81.

    Kobryn, H. T., Wouters, K., Beckley, L. E. & Heege, T. Ningaloo reef: shallow marine habitats mapped using a hyperspectral sensor. PLoS ONE 8, e70105 (2013).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 82.

    Geoscience Australia. Bathymetry Grids of Carnarvon Shelf. https://www.ga.gov.au (2008).

  • 83.

    Geoscience Australia. Australian Bathymetry and Topography Grid, June 2009. https://www.ga.gov.au (2009).

  • 84.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2015).

  • 85.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Google Scholar 

  • 86.

    Naimi, B., Hamm, N., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography 37, 191–203 (2014).

    Google Scholar 

  • 87.

    MacLeod, C.D. An Introduction to Using GIS in Marine Mammal Research. Course Manual. Adelaide, South Australia, 15–19 July 2013 Fremantle, Western Australia, 22–26 July 2013 (2013).

  • 88.

    Gu, W. & Swihart, R. K. Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biol. Conserv. 116, 195–203 (2004).

    Google Scholar 

  • 89.

    Barbet-Massin, M., Thuiller, W. & Jiguet, F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models?. Ecography 33, 878–886 (2010).

    Google Scholar 

  • 90.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed  Google Scholar 

  • 91.

    Gottschalk, T. K., Aue, B., Hotes, S. & Ekschmitt, K. Influence of grain size on species-habitat models. Ecol. Model. 222, 3403–3412 (2011).

    Google Scholar 

  • 92.

    Hanberry, B. B. Finer grain size increases effects of error and changes influence of environmental predictors on species distribution models. Ecol. Inform. 15, 8–13 (2013).

    Google Scholar 

  • 93.

    Passadore, C., Möller, L. M., Diaz-Aguirre, F. & Parra, G. J. Modelling dolphin distribution to inform future spatial conservation decisions in a marine protected area. Sci. Rep. 8, 1–14 (2018).

    CAS  Google Scholar 

  • 94.

    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

    Google Scholar 

  • 95.

    Elith, J. & Graham, C. H. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32, 66–77 (2009).

    Google Scholar 

  • 96.

    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).

    Google Scholar 

  • 97.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol Evol 22, 42–47 (2006).

    PubMed  Google Scholar 

  • 98.

    Franklin, J. Mapping species distributions: spatial inference and prediction (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  • 99.

    Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 9–17 (2011).

    Google Scholar 

  • 100.

    Sun, Y. Crested ibis in a dynamic and increasingly human-dominated landscape. PhD Thesis. Faculty of Geo-Information Science and Earth Observation, Univeristy of Twente, The Netherlands (2016).

  • 101.

    Oppel, S. et al. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol. Conserv. 156, 94–104 (2012).

    Google Scholar 

  • 102.

    Gårdmark, A. et al. Biological ensemble modeling to evaluate potential futures of living marine resources. Ecol Appl 23, 742–754 (2013).

    PubMed  Google Scholar 

  • 103.

    Pikesley, S. K. et al. Modelling the niche for a marine vertebrate: A case study incorporating behavioural plasticity, proximate threats and climate change. Ecography 38, 001–010 (2015).

    Google Scholar 

  • 104.

    Abrahms, B., H. et al. Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species. Divers. Distrib. 25, 1182–1193 (2019).

  • 105.

    Pérez-Jorge, S. et al. Can static habitat protection encompass critical areas for highly mobile marine top predators? Insights from coastal East Africa. PLoS ONE 10, e0133265 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 106.

    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Google Scholar 

  • 107.

    Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).

    Google Scholar 

  • 108.

    Friedman, J., Hastie, T. & Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 28, 337–407 (2000).

    MATH  Google Scholar 

  • 109.

    De’ath, G. & Fabricius, K. E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81, 3178–3192 (2000).

    Google Scholar 

  • 110.

    Hastie, T., Tibshirani, R. & Buja, A. Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 89, 1255–1270 (1994).

    MathSciNet  MATH  Google Scholar 

  • 111.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Google Scholar 

  • 112.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  • 113.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Google Scholar 

  • 114.

    Becker, E.A., et al. Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecol Evol. https://doi.org/10.1002/ece3.6316 (2020)

  • 115.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).

    Google Scholar 

  • 116.

    Peterson, A.T., et al. Ecological Niches and Geographic Distributions (MPB-49). (Princeton University Press, 2011).

  • 117.

    Hood, G. PopTools version 3.2. 5. https://www.poptools.org. (2011).

  • 118.

    Manly, B. F. Randomization, bootstrap and Monte Carlo methods in biology 3rd edn. (Chapman & Hall, London, 2007).

    Google Scholar 


  • Source: Ecology - nature.com

    Six strategic areas identified for shared faculty hiring in computing

    Weather and biotic interactions as determinants of seasonal shifts in abundance measured through nest-box occupancy in the Siberian flying squirrel