in

Altitude and hillside orientation shapes the population structure of the Leishmania infantum vector Phlebotomus ariasi

  • 1.

    Dolmatova, A. V. & Demina, N. A. Les phlébotomes (Phlebotominae) et les maladies qu’ils transmettent. ORSTOM 20, 1–169 (1966).

    Google Scholar 

  • 2.

    Bichaud, L. et al. Epidemiologic relationship between toscana virus infection and Leishmania infantum due to common exposure to Phlebotomus perniciosus sandfly vector. PLoS Negl. Trop. Dis. 5(9), e1328 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Rioux, J.-A., Killick-Kendrick, R., Perieres, J., Turner, D. & Lanotte, G. Ecologie des Leishmanioses dans le sud de la France. 13. Les sites de “flanc de coteau”, biotopes de transmission privilégiés de la Leishmaniose viscérale en Cévennes. Ann . Parasitol. Hum. Comp. 55(4), 445–453 (1980).

    CAS  PubMed  Google Scholar 

  • 4.

    Rioux, J.-A. et al. Ecology of leishmaniasis in the South of France. 22. Reliability and representativeness of 12 Phlebotomus ariasi, P. perniciosus and Sergentomyia minuta (Diptera: Psychodidae) sampling stations in Vallespir (eastern French Pyrenees region). Parasite 20, 34 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Rioux, J.-A. et al. Epidémiologie des leishmanioses dans le Sud de la France. Monogr. l’Inst. Natl. Santé Rech. Méd. 20, 1–228 (1969).

    Google Scholar 

  • 6.

    Lewis, D. J. A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bull. Br. Museum 45(2), 121–209 (1982).

    Google Scholar 

  • 7.

    Rossi, E. et al. Mapping the main Leishmania phlebotomine vector in the endemic focus of the Mt. Vesuvius in southern Italy. Geospat. Health 1(2), 191–198 (2007).

    PubMed  Google Scholar 

  • 8.

    Ballart, C., Barón, S., Alcover, M. M., Portus, M. & Gallego, M. Distribution of phlebotomine sand flies (Diptera: Psychodidae) in Andorra: First finding of P. perniciosus and wide distribution of P. ariasi. Acta Trop. 122(1), 155–159 (2012).

    CAS  PubMed  Google Scholar 

  • 9.

    Ballart, C. et al. Importance of individual analysis of environmental and climatic factors affecting the density of Leishmania vectors living in the same geographical area: The example of Phlebotomus ariasi and P. perniciosus in northeast Spain. Geospat. Health 8(2), 389–403 (2014).

    PubMed  Google Scholar 

  • 10.

    Boussaa, S., Neffa, M., Pesson, B. & Boumezzough, A. Phlebotomine sandflies (Diptera: Psychodidae) of southern Morocco: Results of entomological surveys along the Marrakech-Ouarzazat and Marrakech-Azilal roads. Ann. Trop. Med. Parasitol. 104(2), 163–170 (2010).

    CAS  PubMed  Google Scholar 

  • 11.

    Franco, F. et al. Genetic structure of Phlebotomus (Larroussius) ariasi populations, the vector of Leishmania infantum in the western Mediterranean: Epidemiological implications. Int. J. Parasitol. 40(11), 1335–1346 (2010).

    PubMed  Google Scholar 

  • 12.

    Ready, P. Leishmaniasis emergence in Europe. Euro Surveill. 15(10), 19505 (2010).

    CAS  PubMed  Google Scholar 

  • 13.

    Branco, S. et al. Entomological and ecological studies in a new potential zoonotic leishmaniasis focus in Torres Novas municipality, Central Region, Portugal. Acta Trop. 125(3), 339–348 (2013).

    CAS  PubMed  Google Scholar 

  • 14.

    Barón, S. D. et al. Risk maps for the presence and absence of Phlebotomus perniciosus in an endemic area of leishmaniasis in southern Spain: Implications for the control of the disease. Parasitology 138(10), 1234–1244 (2011).

    PubMed  Google Scholar 

  • 15.

    Boudabous, R. et al. The phlebotomine fauna (Diptera: Psychodidae) of the eastern coast of Tunisia. J. Med. Entomol. 46(1), 1–8 (2009).

    CAS  PubMed  Google Scholar 

  • 16.

    European Centre for Disease Prevention and Control E. Phlebotomine sand flies maps [internet] 2019 [10/01/19]. https://www.ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/phlebotomine-maps.

  • 17.

    Dedet, J.-P. Les leishmanioses en France métropolitaine. BEH Hors-Sér. 2010, 9–12 (2020).

    Google Scholar 

  • 18.

    Depaquit, J., Grandadam, M., Fouque, F., Andry, P.-E. & Peyrefitte, C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: A review. Euro Surveill. 15(10), 19507 (2010).

    CAS  PubMed  Google Scholar 

  • 19.

    Kamhawi, S. et al. Two populations of Phlebotomus ariasi in the Cévennes focus of leishmaniasis in the south of France revealed by analysis of cuticular hydrocarbons. Med. Vet. Entomol. 1(1), 97–102 (1987).

    CAS  PubMed  Google Scholar 

  • 20.

    Pesson, B., Wallon, M., Floer, M. & Kristensen, A. Étude isoenzymatique de populations méditerranéennes de phlébotomes du sous-genre Larroussius. Parassitologia 33, 471–476 (1991).

    PubMed  Google Scholar 

  • 21.

    Ballart, C., Pesson, B. & Gallego, M. Isoenzymatic characterization of Phlebotomus ariasi and P. perniciosus of canine leishmaniasis foci from Eastern Pyrenean regions and comparison with other populations from Europe. Parasite. 25, 3 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Martin-Sanchez, J., Gramiccia, M., Pesson, B. & Morillas-Marquez, F. Genetic polymorphism in sympatric species of the genus Phlebotomus, with special reference to Phlebotomus perniciosus and Phlebotomus longicuspis (Diptera, Phlebotomidae). Parasite 7(4), 247–254 (2000).

    CAS  PubMed  Google Scholar 

  • 23.

    Mahamdallie, S. S., Pesson, B. & Ready, P. D. Multiple genetic divergences and population expansions of a Mediterranean sandfly, Phlebotomus ariasi, in Europe during the Pleistocene glacial cycles. Heredity 106(5), 714–726 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Prudhomme, J. et al. Ecology and spatiotemporal dynamics of sandflies in the Mediterranean Languedoc region (Roquedur area, Gard, France). Parasit. Vectors 8(1), 1–14 (2015).

    Google Scholar 

  • 25.

    Prudhomme, J. et al. Ecology and morphological variations in wings of Phlebotomus ariasi (Diptera: Psychodidae) in the region of Roquedur (Gard, France): A geometric morphometrics approach. Parasit. Vectors 9(1), 578 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Lachaud, L. et al. Surveillance of leishmaniases in France, 1999 to 2012. Euro Surveill. 18(29), 20534 (2013).

    CAS  PubMed  Google Scholar 

  • 27.

    Prudhomme, J. et al. New microsatellite markers for multi-scale genetic studies on Phlebotomus ariasi Tonnoir, vector of Leishmania infantum in the Mediterranean area. Acta Trop. 142, 79–85 (2015).

    CAS  PubMed  Google Scholar 

  • 28.

    Wattier, R., Engel, C. R., Saumitou-Laprade, P. & Valero, M. Short allele dominance as a source of heterozygote deficiency at microsatellite loci: Experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol. Ecol. 7(11), 1569–1573 (1998).

    CAS  Google Scholar 

  • 29.

    De Meeûs T, Chan CT, Ludwig JM, Tsao JI, Patel J, Bhagatwala J, Beati L. Deceptive combined effects of short allele dominance and stuttering: An example with Ixodes scapularis, the main vector of Lyme disease in the U.S.A. peerreviewed and recommended by PCI Evolutionary Biology. 2019.

  • 30.

    De Meeûs, T. Revisiting, FIS, FST, Wahlund Effects, and Null Alleles. J. Hered. 109(4), 446–456 (2018).

    PubMed  Google Scholar 

  • 31.

    Teriokhin, A. T., De Meeûs, T. & Guegan, J. F. On the power of some binomial modifications of the Bonferroni multiple test. J. Gener. Biol. 68(5), 332–340 (2007).

    CAS  Google Scholar 

  • 32.

    De Meeûs, T., Guégan, J.-F. & Teriokhin, A. T. MultiTest V.1.2., a program to binomially combine independent tests and performance comparison with other related methods on proportional data. BMC Bioinform. 10(1), 443 (2009).

    Google Scholar 

  • 33.

    Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47(3), 253–259 (1983).

    CAS  PubMed  MATH  Google Scholar 

  • 34.

    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11(1), 5–18 (2011).

    PubMed  Google Scholar 

  • 35.

    Wang, J. Does GST underestimate genetic differentiation from marker data? Mol. Ecol. 24(14), 3546–3558 (2015).

    CAS  PubMed  Google Scholar 

  • 36.

    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).

    CAS  PubMed  Google Scholar 

  • 37.

    Maingon, R. et al. Genetic identification of two sibling species of Lutzomyia longipalpis (Diptera: Psychodidae) that produce distinct male sex pheromones in Sobral, Ceará State, Brazil. Mol. Ecol. 12(7), 1879–1894 (2003).

    CAS  PubMed  Google Scholar 

  • 38.

    Bauzer, L. G., Souza, N. A., Maingon, R. D. & Peixoto, A. A. Lutzomyia longipalpis in Brazil: A complex or a single species? A mini-review. Mem. Inst. Oswaldo Cruz. 102(1), 1–12 (2007).

    PubMed  Google Scholar 

  • 39.

    Scarpassa, V. M. & Alencar, R. B. Lutzomyia umbratilis, the main vector of Leishmania guyanensis, represents a novel species complex? PLoS One 7(5), e37341 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Tharmatha, T., Gajapathy, K., Ramasamy, R. & Surendran, S. N. Morphological and molecular identification of cryptic species in the Sergentomyia bailyi (Sinton, 1931) complex in Sri Lanka. Bull. Entomol. Res. 107(1), 58–65 (2016).

    PubMed  Google Scholar 

  • 41.

    Balloux, F. Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 58(9), 1891–1900 (2004).

    PubMed  Google Scholar 

  • 42.

    Manangwa, O. et al. Detecting Wahlund effects together with amplification problems: Cryptic species, null alleles and short allele dominance in Glossina pallidipes populations from Tanzania. Mol. Ecol. Resour. 19(3), 757–772 (2019).

    PubMed  Google Scholar 

  • 43.

    Hartl, D. L. & Clarck, A. G. Principles of Population Genetics 2nd edn. (Sinauer Associates Inc, Sunderland, 1989).

    Google Scholar 

  • 44.

    Araki, A. S. et al. Multilocus analysis of divergence and introgression in sympatric and allopatric sibling species of the Lutzomyia longipalpis complex in Brazil. PLoS Negl Trop Dis. 7(10), e2495 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Kyriacou, C. Sex and rhythms in sandflies and mosquitoes: an appreciation of the work of Alexandre Afranio Peixoto (1963–2013). Infect. Genet. Evol. 28, 662–665 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Abonnenc E. Les phlébotomes de la région éthiopienne (Diptera, Psychodidae): Cahiers de l’ORSTOM, série Entomologie médicale et Parasitologie; 1972 01/01. 239.

  • 47.

    Rougeron, V. et al. Reproductive strategies and population structure in Leishmania: Substantial amount of sex in Leishmania Viannia guyanensis. Mol. Ecol. 20(15), 3116–3127 (2011).

    PubMed  Google Scholar 

  • 48.

    Rougeron, V. et al. Multifaceted population structure and reproductive strategy in Leishmania donovani complex in one Sudanese village. PLoS Negl. Trop. Dis. 5(12), e1448 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Rioux, J.-A. et al. Ecologie des Leishmanioses dans le sud de la France. 12. Dispersion horizontale de Phlebotomus ariasi Tonnoir, 1921. Experiences préliminaires. Ann. Parasitol. Hum. Comp. 54(6), 673–682 (1979).

    CAS  PubMed  Google Scholar 

  • 50.

    Latch, E. K., Dharmarajan, G., Glaubitz, J. C. & Rhodes, O. E. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv. Genet. 7(2), 295–302 (2006).

    Google Scholar 

  • 51.

    Kaeuffer, R., Réale, D., Coltman, D. & Pontier, D. Detecting population structure using STRUCTURE software: Effect of background linkage disequilibrium. Heredity 99(4), 374–380 (2007).

    CAS  PubMed  Google Scholar 

  • 52.

    Frantz, A. C., Cellina, S., Krier, A., Schley, L. & Burke, T. Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: Clusters or isolation by distance? J. Appl. Ecol. 46(2), 493–505 (2009).

    Google Scholar 

  • 53.

    Blair, C. et al. A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol. Ecol. Resour. 12(5), 822–833 (2012).

    PubMed  Google Scholar 

  • 54.

    Bohling, J. H. et al. Describing a developing hybrid zone between red wolves and coyotes in eastern North Carolina, USA. Evol. Appl. 9(6), 791–804 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Le, D. P. bioclimat Mediterraneen: Analyse des formes climatiques par le systeme d’Emberger. Vegetation 34(2), 87–103 (1977).

    Google Scholar 

  • 56.

    Alten, B. et al. Sampling strategies for phlebotomine sand flies (Diptera: Psychodidae) in Europe. Bull. Entomol. Res. 105(6), 664–678 (2015).

    CAS  PubMed  Google Scholar 

  • 57.

    Ayhan, N. et al. Practical guidelines for studies on sandfly-borne phleboviruses: Part I: Important points to consider ante field work. Vector Borne Zoonot. Dis. 17(1), 73–80 (2017).

    Google Scholar 

  • 58.

    Killick-Kendrick, R. et al. The identification of female sandflies of the subgenus Larroussius by the morphology of the spermathecal ducts. Parassitologia 33, 335–347 (1991).

    PubMed  Google Scholar 

  • 59.

    Wang, Q. & Wang, X. Comparison of methods for DNA extraction from a single chironomid for PCR analysis. Pak. J. Zool. 44(2), 421–426 (2012).

    CAS  Google Scholar 

  • 60.

    Esseghir, S., Ready, P. D., Killick-Kendrick, R. & Ben-Ismail, R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect. Mol. Biol. 6(3), 221–225 (1997).

    Google Scholar 

  • 61.

    Depaquit, J., Leger, N. & Randrianambinintsoa, F. J. Paraphyly of the subgenus Anaphlebotomus and creation of Madaphlebotomus subg. Nov. (Phlebotominae: Phlebotomus). Med. Vet. Entomol. 29(2), 159–170 (2015).

    CAS  PubMed  Google Scholar 

  • 62.

    Coombs, J. A., Letcher, B. H. & Nislow, K. H. Create: A software to create input files from diploid genotypic data for 52 genetic software programs. Mol. Ecol. Resour. 8(3), 578–580 (2008).

    CAS  PubMed  Google Scholar 

  • 63.

    Bohling, J. H., Adams, J. R. & Waits, L. P. Evaluating the ability of Bayesian clustering methods to detect hybridization and introgression using an empirical red wolf data set. Mol. Ecol. 22(1), 74–86 (2013).

    PubMed  Google Scholar 

  • 64.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11(1), 94 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405 (2008).

    CAS  Google Scholar 

  • 66.

    R Development Core Team RT. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. https://www.R-project.org/. 2018.

  • 67.

    Corander, J. & Marttinen, P. Bayesian identification of admixture events using multilocus molecular markers. Mol. Ecol. 15(10), 2833–2843 (2006).

    PubMed  Google Scholar 

  • 68.

    Corander, J., Marttinen, P., Siren, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 9, 539 (2008).

    Google Scholar 

  • 69.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resourc. 4(2), 359–361 (2012).

    Google Scholar 

  • 71.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).

    CAS  Google Scholar 

  • 72.

    Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19(3 Pt 1), 233–257 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Takezaki, N. & Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144(1), 389–399 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86(6), 485–486 (1995).

    Google Scholar 

  • 75.

    Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001).

    MathSciNet  MATH  Google Scholar 

  • 76.

    Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19(3), 395–420 (1965).

    Google Scholar 

  • 77.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38(6), 1358–1370 (1984).

    CAS  PubMed  Google Scholar 

  • 78.

    Goudet, J., Raymond, M., De Meeûs, T. & Rousset, F. Testing differentiation in diploid populations. Genetics 20, 144 (1996).

    Google Scholar 

  • 79.

    De Meeûs, T. et al. Population genetics and molecular epidemiology or how to “débusquer la bête”. Infect. Genet. Evol. 20, 7 (2007).

    Google Scholar 

  • 80.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4(3), 535–538 (2004).

    Google Scholar 

  • 81.

    Brookfield, J. F. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5(3), 453–455 (1996).

    CAS  PubMed  Google Scholar 

  • 82.

    Frontier, S. Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modèle du bâton brisé. J. Exp. Mar. Biol. Ecol. 25, 67–75 (1976).

    Google Scholar 

  • 83.

    Fox, J. & The, R. Commander: A basic-statistics graphical user interface to R. J. Stat. Softw. 14(9), 1–42 (2005).

    Google Scholar 

  • 84.

    Fox, J. Extending the R Commander by “Plug-In” Packages. R News 7(3), 46–52 (2007).

    Google Scholar 

  • 85.

    Akaïke, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974).

    ADS  MathSciNet  MATH  Google Scholar 

  • 86.

    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 20, 8 (2008).

    Google Scholar 

  • 87.

    Séré, M., Thevenon, S., Belem, A. M. G. & De Meeus, T. Comparison of different genetic distances to test isolation by distance between populations. Heredity 119(2), 55–63 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 88.

    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27(2), 209–220 (1967).

    CAS  PubMed  Google Scholar 

  • 89.

    De Meeûs, T. Statistical decision from k test series with particular focus on population genetics tools: A DIY notice. Infect. Genet. Evol. 22, 91–93 (2014).

    PubMed  Google Scholar 

  • 90.

    Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14(1), 209–214 (2014).

    CAS  PubMed  Google Scholar 

  • 91.

    Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci*. Conserv. Genet. 7(2), 167–184 (2006).

    Google Scholar 

  • 92.

    Waples, R. S. & Do, C. ldne: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8(4), 753–756 (2008).

    PubMed  Google Scholar 

  • 93.

    Peel, D., Waples, R. S., Macbeth, G. M., Do, C. & Ovenden, J. R. Accounting for missing data in the estimation of contemporary genetic effective population size (Ne). Mol. Ecol. Resour. 13(2), 243–253 (2013).

    CAS  PubMed  Google Scholar 

  • 94.

    Nomura, T. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol. Appl. 1(3), 462–474 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 95.

    Vitalis, R. & Couvet, D. Estimation of effective population size and migration rate from one- and two-locus identity measures. Genetics 157(2), 911–925 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 96.

    Vitalis, R. & Couvet, D. Estim 1.0: A computer program to infer population parameters from one- and two-locus gene identity probabilities. Mol. Ecol. Notes 1(4), 354–356 (2005).

    Google Scholar 


  • Source: Ecology - nature.com

    American mastodon mitochondrial genomes suggest multiple dispersal events in response to Pleistocene climate oscillations

    Lessons from the Clean Air Car Race 50 years later