in

Subclonal reconstruction of tumors by using machine learning and population genetics

  • 1.

    Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416 (2019).

    CAS  PubMed  Google Scholar 

  • 3.

    Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. 7, a026625 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Meth. 11, 396–398 (2014).

    CAS  Google Scholar 

  • 6.

    Deshwar, A. G. et al. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 16, 35 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Miller, C. A. et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput. Biol. 10, e1003665 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714 (2016).

    CAS  PubMed  Google Scholar 

  • 9.

    Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Kessler, D. A. & Levine, H. Large population solution of the stochastic Luria–Delbruck evolution model. Proc. Natl Acad. Sci. USA 110, 11682–11687 (2013).

    CAS  PubMed  Google Scholar 

  • 11.

    Kessler, D. A. & Levine, H. Scaling solution in the large population limit of the general asymmetric stochastic Luria–Delbrück evolution process. J. Stat. Phys. 158, 783–805 (2015).

    PubMed  Google Scholar 

  • 12.

    Durrett, R. Population genetics of neutral mutations in exponentially growing cancer cell populations. Ann. Appl. Probabil. 23, 230–250 (2013).

    Google Scholar 

  • 13.

    Nicholson, M. D. & Antal, T. Universal asymptotic clone size distribution for general population growth. Bull. Math. Biol. 78, 2243–2276 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Griffiths, R. C. & Tavaré, S. The age of a mutation in a general coalescent. Stoch. Models 14, 273–295 (1998).

    Google Scholar 

  • 15.

    Sun, R. et al. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat. Genet. 49, 1015–1024 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Williams, M. J. et al. Quantification of subclonal selection in cancer from bulk sequencing data. Nat. Genet. 50, 895–903 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Hartl, D. L. & Clark, A. G. Principles of Population Genetics (Sinauer Associates, Inc., 2006).

  • 18.

    Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Graham, T. A. & Sottoriva, A. Measuring cancer evolution from the genome. J. Pathol. 241, 183–191 (2017).

    PubMed  Google Scholar 

  • 20.

    Griffith, M. et al. Optimizing cancer genome sequencing and analysis. Cell Systems 1, 210–223 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Cross, W. et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2, 1661–1672 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1–13 (2017).

    Google Scholar 

  • 23.

    Zapata, L. et al. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol. 19, 924 (2018).

    Google Scholar 

  • 24.

    Lee, J. J.-K. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857.e21 (2019).

    CAS  PubMed  Google Scholar 

  • 25.

    The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    CAS  Google Scholar 

  • 26.

    Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Williams, M. J. et al. Measuring the distribution of fitness effects in somatic evolution by combining clonal dynamics with dN/dS ratios. eLife Sci. 9, 612 (2020).

    Google Scholar 

  • 28.

    Körber, V. et al. Evolutionary trajectories of IDHWT glioblastomas reveal a common path of early tumorigenesis instigated years ahead of initial diagnosis. Cancer Cell 35, 692–704.e12 (2019).

    PubMed  Google Scholar 

  • 29.

    Barthel, F. P. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112–120 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    CAS  PubMed  Google Scholar 

  • 31.

    Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    CAS  PubMed  Google Scholar 

  • 32.

    Morris, L. G. T. et al. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget 7, 10051–10063 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    CAS  PubMed  Google Scholar 

  • 34.

    Espiritu, S. M. G. et al. The evolutionary landscape of localized prostate cancers drives clinical aggression. Cell 173, 1003–1013.e15 (2018).

    CAS  PubMed  Google Scholar 

  • 35.

    Salcedo, A. et al. A community effort to create standards for evaluating tumor subclonal reconstruction. Nat. Biotechnol. 38, 97–107 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Yang, L. et al. An enhanced genetic model of colorectal cancer progression history. Genome Biol. 20, 168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Noorani, A. et al. Genomic evidence supports a clonal diaspora model for metastases of esophageal adenocarcinoma. Nat. Genet. 347, 1–10 (2020).

    Google Scholar 

  • 40.

    Navin, N. E. The first five years of single-cell cancer genomics and beyond. Genome Res. 25, 1499–1507 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Chkhaidze, K. et al. Spatially constrained tumour growth affects the patterns of clonal selection and neutral drift in cancer genomic data. PLoS Comput. Biol. 15, e1007243 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Fusco, D., Gralka, M., Kayser, J., Anderson, A. & Hallatschek, O. Excess of mutational jackpot events in expanding populations revealed by spatial Luria–Delbrück experiments. Nat. Commun. 7, 12760 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Teh, Y. W. Dirichlet processes. in Encyclopedia of Machine Learning (eds Sammut, C. & Webb, G.) 280–287 (Springer, 2011).

  • 44.

    Ghahramani, Z., Jordan, M. I. & Adams, R. P. Tree-structured stick breaking for hierarchical data. in Advances in Neural Information Processing Systems (eds Lafferty, J. D. et al.) 2319–2327 (Neural Information Processing Systems, 2010).

  • 45.

    Ma, Z. & Leijon, A. Bayesian estimation of beta mixture models with variational inference. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2160–2173 (2011).

    PubMed  Google Scholar 

  • 46.

    Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Google Scholar 

  • 47.

    Schröder, C. & Rahmann, S. A hybrid parameter estimation algorithm for beta mixtures and applications to methylation state classification. Algorithms Mol. Biol. 12, 21 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Biernacki, C., Celeux, G. & Govaert, G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725 (2000).

    Google Scholar 


  • Source: Ecology - nature.com

    American mastodon mitochondrial genomes suggest multiple dispersal events in response to Pleistocene climate oscillations

    Lessons from the Clean Air Car Race 50 years later