in

Mass mortality in freshwater mussels (Actinonaias pectorosa) in the Clinch River, USA, linked to a novel densovirus

  • 1.

    Vaughn, C. C. Ecosystem services provided by freshwater mussels. Hydrobiologia 810, 15–27. https://doi.org/10.1007/s10750-017-3139-x (2018).

    Article  Google Scholar 

  • 2.

    Christian, A. D., Smith, B. N., Berg, D. J., Smoot, J. C. & Findlay, R. H. Trophic position and potential food sources of 2 species of unionid bivalves (Mollusca:Unionidae) in 2 small Ohio streams. Freshw. Sci. 23, 101–113 (2004).

    Google Scholar 

  • 3.

    Vaughn, C. C. Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. Bioscience 60, 25–35. https://doi.org/10.1525/bio.2010.60.1.7 (2010).

    Article  Google Scholar 

  • 4.

    Howard, J. K. & Cuffey, K. M. The functional role of native freshwater mussels in the fluvial benthic environment. Freshw. Biol. 51, 460–474. https://doi.org/10.1111/j.1365-2427.2005.01507.x (2006).

    Article  Google Scholar 

  • 5.

    Izumi, T., Yagita, K., Izumiyama, S., Endo, T. & Itoh, Y. Depletion of Cryptosporidium parvum oocysts from contaminated sewage by using freshwater benthic pearl clams (Hyriopsis schlegeli). Appl. Environ. Microbiol. 78, 7420–7428. https://doi.org/10.1128/AEM.01502-12 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Ismail, N. S., Müller, C. E., Morgan, R. R. & Luthy, R. G. Uptake of contaminants of emerging concern by the bivalves Anodonta californiensis and Corbicula fluminea. Environ. Sci. Technol. 48, 9211–9219. https://doi.org/10.1021/es5011576 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 7.

    Ismail, N. S. et al. Improvement of urban lake water quality by removal of Escherichia coli through the action of the bivalve Anodonta californiensis. Environ. Sci. Technol. 49, 1664–1672. https://doi.org/10.1021/es5033212 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 8.

    Williams, J. D. et al. A revised list of the freshwater mussels (Mollusca: Bivalvia: Unionida) of the United States and Canada. Freshw. Mollusk Biol. Conserv. 20, 33. https://doi.org/10.31931/fmbc.v20i2.2017.33-58 (2017).

    Article  Google Scholar 

  • 9.

    Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321. https://doi.org/10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 (2004).

    Article  Google Scholar 

  • 10.

    Haag, W. R. North American Freshwater Mussels: Natural History, Ecology, and Conservation (Cambridge University Press, Cambridge, 2012).

    Google Scholar 

  • 11.

    Strayer, D. L. Effects of alien species on freshwater mollusks in North America. J. N. Am. Benthol. Soc. 18, 74–98. https://doi.org/10.2307/1468010 (1999).

    Article  Google Scholar 

  • 12.

    Haag, W. R. Reassessing enigmatic mussel declines in the United States. Freshw. Mollusk Biol. Conserv. 22, 43–60 (2019).

    Article  Google Scholar 

  • 13.

    Goldberg, T. L., Dunn, C. D., Leis, E. & Waller, D. L. A novel picornalike virus in a Wabash Pigtoe (Fusconaia flava) from the Upper Mississippi River, USA. Freshw. Mollusk Biol. Conserv. 22, 81–84 (2019).

    Google Scholar 

  • 14.

    Downing, J. A., Van Meter, P. & Woolnough, D. A. Suspects and evidence: a review of the causes of extirpation and decline in freshwater mussels. Anim. Biodivers. Conserv. 33, 151–185 (2010).

    Google Scholar 

  • 15.

    Zipper, C. E. et al. Freshwater mussel population status and habitat quality in the Clinch Rver, Virginia and Tennessee, USA: a featured collection. J. Am. Water Resour. Assoc. 50, 807–819 (2014).

    ADS  Article  Google Scholar 

  • 16.

    Jones, J. et al. Clinch River freshwater mussels upstream of Norris Reservoir, Tennessee and Virginia: a quantitative assessment from 2004 to 2009. J. Am. Water Resour. Assoc. 50, 820–836. https://doi.org/10.1111/jawr.12222 (2014).

    ADS  Article  Google Scholar 

  • 17.

    Jones, J. W. et al. Collapse of the Pendleton Island mussel fauna in the Clinch River, Virginia: setting baseline conditions to guide recovery and restoration. Freshw. Mollusk Biol. Conserv. 21, 36–56 (2018).

    Google Scholar 

  • 18.

    Cope, W. G. & Jones, J. W. Recent precipitous declines of endangered freshwater mussels in the Clinch River: an in situ assessment of water quality stressors related to energy development and other land-use. 244 (U.S. Fish and Wildlife Service, Southwestern Virginia Field Office, 2016).

  • 19.

    Richard, J. C. Clinch River mussel die-off. Ellipsaria 20, 1–3 (2018).

    Google Scholar 

  • 20.

    Neves, R. J. Proceedings of the Workshop on Die-offs of Freshwater Mussels in the United States (U.S. Fish and Wildlife Service, Upper Mississippi River Conservation Committee, 1986).

  • 21.

    Starliper, C. E., Powell, J., Garner, J. T. & Schill, W. B. Predominant bacteria isolated from moribund Fusconaia ebena ebonyshells experiencing die-offs in Pickwick Reservoir, Tennessee River, Alabama. J. Shellfish Res. 30, 359–366. https://doi.org/10.2983/035.030.0223 (2011).

    Article  Google Scholar 

  • 22.

    Grizzle, J. M. & Brunner, C. J. Infectious diseases of freshwater mussels and other freshwater bivalve mollusks. Rev. Fish. Sci. 17, 425–467 (2009).

    Article  Google Scholar 

  • 23.

    Leis, E. et al. Building a response network to investigate potential pathogens associated with unionid mortality events. Ellipsaria 20, 44–45 (2018).

    Google Scholar 

  • 24.

    Henley, W. F., Beaty, B. B. & Jones, J. W. Evaluations of organ tissues from Actinonaias pectorosa collected during a mussel die-off in 2016 at Kyles Ford, Clinch River, Tennessee. J. Shellfish Res. 38, 681. https://doi.org/10.2983/035.038.0320 (2019).

    Article  Google Scholar 

  • 25.

    Leis, E., Erickson, S., Waller, D., Richard, J. & Goldberg, T. A comparison of bacteria cultured from unionid mussel hemolymph between stable populations in the Upper Mississippi River basin and populations affected by a mortality event in the Clinch River. Freshw. Mollusk Biol. Conserv. 22, 70–80 (2019).

    Google Scholar 

  • 26.

    Garcia, C. et al. Ostreid herpesvirus 1 detection and relationship with Crassostrea gigas spat mortality in France between 1998 and 2006. Vet. Res. 42, 73. https://doi.org/10.1186/1297-9716-42-73 (2011).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Arzul, I., Corbeil, S., Morga, B. & Renault, T. Viruses infecting marine molluscs. J. Invertebr. Pathol. 147, 118–135. https://doi.org/10.1016/j.jip.2017.01.009 (2017).

    Article  PubMed  Google Scholar 

  • 28.

    Zhang, Z., Sufang, D., Yimin, X. & Jie, W. Studies on the mussel Hyriopsis cumingii plague. I. a new viral infectious disease. Acta Hydrobiol. Sin. 26, 308–312 (1986).

    Google Scholar 

  • 29.

    Zhong, L., Xiao, T.-Y., Huang, J., Dai, L.-Y. & Liu, X.-Y. Histopathological examination of bivalve mussel Hyriopsis cumingii lea artificially infected by virus. Acta Hydrobiol. Sin. 35, 666–671 (2011).

    Google Scholar 

  • 30.

    Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543. https://doi.org/10.1038/nature20167 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 31.

    Zhang, Y. Z., Shi, M. & Holmes, E. C. Using metagenomics to characterize an expanding vrosphere. Cell 172, 1168–1172. https://doi.org/10.1016/j.cell.2018.02.043 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Bergoin, M. & Tijssen, P. Molecular biology of Densovirinae. Contrib. Microbiol. 4, 12–32. https://doi.org/10.1159/000060329 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Mietzsch, M., Penzes, J. J. & Agbandje-McKenna, M. Twenty-five years of structural parvovirology. Viruses https://doi.org/10.3390/v11040362 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Cotmore, S. F. et al. ICTV virus taxonomy profile: Parvoviridae. J. Gen. Virol. 100, 367–368. https://doi.org/10.1099/jgv.0.001212 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Ganesh, B., Masachessi, G. & Mladenova, Z. Animal picobirnavirus. Virus Dis. 25, 223–238. https://doi.org/10.1007/s13337-014-0207-y (2014).

    Article  Google Scholar 

  • 36.

    Gustafson, L. L. et al. Evaluation of a nonlethal technique for hemolymph collection in Elliptio complanata, a freshwater bivalve (Mollusca: Unionidae). Dis. Aquat. Organ. 65, 159–165. https://doi.org/10.3354/dao065159 (2005).

    Article  PubMed  Google Scholar 

  • 37.

    Lees, D. Viruses and bivalve shellfish. Int. J. Food Microbiol. 59, 81–116. https://doi.org/10.1016/S0168-1605(00)00248-8 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Faust, C., Stallknecht, D., Swayne, D. & Brown, J. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity. Proc. R. Soc. B 276, 3727–3735. https://doi.org/10.1098/rspb.2009.0572 (2009).

    Article  PubMed  Google Scholar 

  • 39.

    Fédière, G. in Parvoviruses. From Molecular Biology to Pathology and Therapeutic Uses. Contributions to Microbiology. Vol. 4 (eds S. Faisst & J. Rommelaere) 1–11 (Karger, 2000).

  • 40.

    Kalagayan, H. et al. IHHN virus as an etiological factor in runt-deformity syndrome (RDS) of juvenile Penaeus vannamei cultured in Hawaii. J. World Aquacult. Soc. 22, 235–243. https://doi.org/10.1111/j.1749-7345.1991.tb00740.x (1991).

    Article  Google Scholar 

  • 41.

    Ito, K., Kidokoro, K., Shimura, S., Katsuma, S. & Kadono-Okuda, K. Detailed investigation of the sequential pathological changes in silkworm larvae infected with Bombyx densovirus type 1. J. Invertebr. Pathol. 112, 213–218. https://doi.org/10.1016/j.jip.2012.12.005 (2013).

    Article  PubMed  Google Scholar 

  • 42.

    Jiang, H. et al. Genetic engineering of Periplaneta fuliginosa densovirus as an improved biopesticide. Arch. Virol. 152, 383–394. https://doi.org/10.1007/s00705-006-0844-6 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Ledermann, J. P., Suchman, E. L., Black, W. C. & Carlson, J. O. Infection and pathogenicity of the mosquito densoviruses AeDNV, HeDNV, and APeDNV in Aedes aegypti mosquitoes (Diptera: Culicidae). J. Econ. Entomol. 97, 1828–1835. https://doi.org/10.1093/jee/97.6.1828 (2004).

    Article  PubMed  Google Scholar 

  • 44.

    Szelei, J. et al. Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. J. Invertebr. Pathol. 106, 394–399. https://doi.org/10.1016/j.jip.2010.12.009 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Kouassi, N. et al. Pathogenicity of diatraea saccharalis densovirus to host insets and characterization of its viral genome. Virol. Sin. 22, 53–60. https://doi.org/10.1007/s12250-007-0062-8 (2007).

    CAS  Article  Google Scholar 

  • 46.

    Bowater, R. et al. A parvo-like virus in cultured redclaw crayfish Cherax quadricarinatus from Queensland, Australia. Dis. Aquat. Organ. 50, 79–86. https://doi.org/10.3354/dao050079 (2002).

    Article  PubMed  Google Scholar 

  • 47.

    Johnson, R. M. & Rasgon, J. L. Densonucleosis viruses (‘densoviruses’) for mosquito and pathogen control. Curr. Opin. Insect. Sci. 28, 90–97. https://doi.org/10.1016/j.cois.2018.05.009 (2018).

    Article  PubMed  Google Scholar 

  • 48.

    Hewson, I. et al. Densovirus associated with sea-star wasting disease and mass mortality. Proc. Natl. Acad. Sci. USA 111, 17278–17283. https://doi.org/10.1073/pnas.1416625111 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 49.

    Fritts, A. K., Peterson, J. T., Hazelton, P. D. & Bringolf, R. B. Evaluation of methods for assessing physiological biomarkers of stress in freshwater mussels. Can. J. Fish. Aquat. Sci. 72, 1450–1459. https://doi.org/10.1139/cjfas-2014-0564 (2015).

    CAS  Article  Google Scholar 

  • 50.

    Cunningham, A. A., Daszak, P. & Wood, J. L. N. One health, emerging infectious diseases and wildlife: two decades of progress?. Philos. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2016.0167 (2017).

    Article  Google Scholar 

  • 51.

    Patterson, M. A. et al. Freshwater Mussel Propagation for Restoration (Cambridge University Press, Cambridge, 2018).

    Google Scholar 

  • 52.

    Toohey-Kurth, K., Sibley, S. D. & Goldberg, T. L. Metagenomic assessment of adventitious viruses in commercial bovine sera. Biologicals 47, 64–68. https://doi.org/10.1016/j.biologicals.2016.10.009 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Löytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 1079, 155–170. https://doi.org/10.1007/978-1-62703-646-7_10 (2014).

    Article  PubMed  Google Scholar 

  • 54.

    Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577. https://doi.org/10.1080/10635150701472164 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Abascal, F., Zardoya, R. & Telford, M. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7-13. https://doi.org/10.1093/nar/gkq291 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. https://doi.org/10.1093/sysbio/syq010 (2010).

    CAS  Article  Google Scholar 

  • 57.

    R Core Team. R: A language and environment for statistical computing, version 3.6.3. https://www.R-project.org (R Foundation for Statistical Computing, Vienna, 2019).


  • Source: Ecology - nature.com

    American mastodon mitochondrial genomes suggest multiple dispersal events in response to Pleistocene climate oscillations

    Lessons from the Clean Air Car Race 50 years later