Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).
World Health Organization. World Malaria Report 2019 (World Health Organization, Geneva, 2019).
Sinka, M. E. et al. A global map of dominant malaria vectors. Parasit. Vectors 5, 69 (2012).
Killeen, G. F. et al. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Glob. Health https://doi.org/10.1136/bmjgh-2016-000212 (2017).
Bayoh, M. N. et al. Anopheles gambiae: Historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar. J. 9, 62. https://doi.org/10.1186/1475-2875-9-62 (2010).
Mwangangi, J. M. et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar. J. https://doi.org/10.1186/1475-2875-12-13 (2013).
Russell, T. L. et al. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar. J. 9, 20 (2010).
Killeen, G. F. Characterizing, controlling and eliminating residual malaria transmission. Malar. J. https://doi.org/10.1186/1475-2875-13-330 (2014).
Sherrard-Smith, E. et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc. Natl. Acad. Sci. 116, 15086–15095. https://doi.org/10.1073/pnas.1820646116 (2019).
Knox, T. B. et al. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region. Parasit. Vectors 7, 76. https://doi.org/10.1186/1756-3305-7-76 (2014).
Moyes, C. L. et al. Analysis-ready datasets for insecticide resistance phenotype and genotype frequency in African malaria vectors. Sci. Data 6, 121. https://doi.org/10.1038/s41597-019-0134-2 (2019).
Russell, T. L., Beebe, N. W., Cooper, R. D., Lobo, N. F. & Burkot, T. R. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar. J. https://doi.org/10.1186/1475-2875-12-56 (2013).
Govella, N. J. & Ferguson, H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front. Physiol. https://doi.org/10.3389/fphys.2012.00199 (2012).
Killeen, G. F. & Chitnis, N. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: A mathematical modelling analysis. Malar. J. https://doi.org/10.1186/1475-2875-13-97 (2014).
Gatton, M. L. et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution https://doi.org/10.1111/evo.12063 (2013).
Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196. https://doi.org/10.1016/j.pt.2015.11.010 (2016).
Pates, H. & Curtis, C. Mosquito behavior and vector control. Annu. Rev. Entomol. https://doi.org/10.1146/annurev.ento.50.071803.130439 (2005).
Gordicho, V. et al. First report of an exophilic Anopheles arabiensis population in Bissau City, Guinea-Bissau: Recent introduction or sampling bias?. Malar. J. 13, 423. https://doi.org/10.1186/1475-2875-13-423 (2014).
Kitau, J. et al. Species shifts in the Anopheles gambiae complex: Do LLINs successfully control Anopheles arabiensis?. PLoS One 7, e31481 (2012).
Smith, A. The preferential indoor resting habitats of Anopheles gambiae in the Umbugwe area of Tanganyika. East Afr. Med. J. 39, 631–635 (1962).
Govella, N., Chaki, P. & Killeen, G. Entomological surveillance of behavioural resilience and resistance in residual malaria vector populations. Malar. J. 12, 124 (2013).
Coluzzi, M. & Sabatini, A. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans. R. Soc. Trop. Med. Hyg. 73, 483–497 (1979).
Main, B. J. et al. The genetic basis of host preference and resting behavior in the major African Malaria vector, Anopheles arabiensis. PLOS Genet. 12, e1006303. https://doi.org/10.1371/journal.pgen.1006303 (2016).
Lindblade, K. et al. Impact of sustained use of insecticide-treated bednets on malaria vector species distribution and culicine mosquitoes. J. Med. Entomol. 43, 428–432 (2006).
Russell, T. et al. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar. J. 10, 80 (2011).
Norris, L. C. & Norris, D. E. Heterogeneity and changes in inequality of malaria risk after introduction of insecticide-treated bed nets in Macha, Zambia. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.11-0595 (2013).
Tirados, I., Costantini, C., Gibson, G. & Torr, S. J. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: Implications for vector control. Med. Vet. Entomol. 20, 425–437. https://doi.org/10.1111/j.1365-2915.2006.652.x (2006).
Pates, H. & Curtis, C. Mosquito behavior and vector control. Ann. Rev. Entomol. 50, 53–70 (2004).
Gillies, M. & Meillon, B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). S. Afr. Inst. Med. Res. 20, 20 (1968).
Meyrowitsch, D. W. et al. Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population?. Malar. J. 10, 188 (2011).
Kaindoa, M. N. et al. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south–eastern Tanzania. PLoS One 12(5), e0177807. https://doi.org/10.1371/journal.pone.0177807 (2017).
Port, G. R. & Boreham, P. F. L. The effects of bednets on feeding by Anopheles gambiae Giles (Diptera: Culicidae). Bull. Entomol. Res. 72, 20 (1982).
Lefevre, T. et al. Beyond nature and nurture: Phenotypic plasticity in blood-feeding behavior of Anopheles gambiae s.s. when humans are not readily accessible. Am. J. Trop. Med. Hyg. 81, 1023–1029 (2009).
Moiroux, N. et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J. Infect. Dis. https://doi.org/10.1093/infdis/jis565 (2012).
Petrarca, V. & Beier, J. C. Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya. Am. J. Trop. Med. Hyg. 46, 20 (1992).
Faye, O. et al. Impact of the use of permethrin pre-impregnated mosquito nets on malaria transmission in a hyperendemic village of Senegal. Med. Trop. (Mars) 58, 355–360 (1998).
Cuzin-Ouattara, N. et al. Wide-scale installation of insecticide-treated curtains confers high levels of protection against malaria transmission in a hyperendemic area of Burkina Faso. Trans. R. Soc. Trop. Med. Hyg. 93, 473–479. https://doi.org/10.1016/S0035-9203(99)90343-7 (1999).
Ilboudo-Sanogo, E. et al. Insecticide-treated materials, mosquito adaptation and mass effect: Entomological observations after five years of vector control in Burkina Faso. Trans. R. Soc. Trop. Med. Hyg. 95, 353–360. https://doi.org/10.1016/S0035-9203(01)90179-8 (2001).
Mathenge, E. et al. Effect of permethrin-impregnated nets on exiting behavior, blood feeding success and time of feeding of malaria mosquitoes (Diptera: Culicidae) in western Kenya. J. Med. Entomol. https://doi.org/10.1603/0022-2585-38.4.531 (2001).
Renggli, S. et al. Design, implementation and evaluation of a national campaign to deliver 18 million free long-lasting insecticidal nets to uncovered sleeping spaces in Tanzania. Malar. J. 12, 20 (2013).
Kramer, K. et al. Effectiveness and equity of the Tanzania National Voucher Scheme for mosquito nets over 10 years of implementation. Malar. J. 16, 255. https://doi.org/10.1186/s12936-017-1902-0 (2017).
Schmidt, C. A., Comeau, G., Monaghan, A. J., Williamson, D. J. & Ernst, K. C. Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): Results of a systematic review and pooled survival analysis. Parasit. Vectors 11, 267 (2018).
Kalra, B. & Parkash, R. Effects of saturation deficit on desiccation resistance and water balance in seasonal populations of the tropical drosophilid Zaprionus indianus. J. Exp. Biol. 219, 3237. https://doi.org/10.1242/jeb.141002 (2016).
Lwetoijera, H. C. et al. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar. J. 331, 20 (2014).
Mayagaya, V. et al. The impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria vectors in southern Tanzania. Malar. J. 14, 17 (2015).
Mayagaya, V. The impact of livestock on the ecology of malaria vectors and malaria transmission in the Kilombero Valley. Tanzania MSc thesis, University of Dar es Salaam (2010).
Corbel, V. et al. Combination of malaria vector control interventions in pyrethroid resistance area in Benin: A cluster randomised controlled trial. Lancet Infect. Dis. https://doi.org/10.1016/s1473-3099(12)70081-6 (2012).
Ngowo, H., Kaindoa, E., Matthiopoulos, J., Ferguson, H. & Okumu, F. Variations in household microclimate affect outdoor-biting behaviour of malaria vectors [version 1; referees: 1 approved, 1 approved with reservations]. Vol. 2 (2017).
Russell, T. et al. Impact of promoting long-lasting insecticide treatment of bednets upon malaria transmission in a rural Tanzania setting with pre existing high coverage of untreated nets. Malar. J. 9, 187 (2010).
Katharina Sophia, K. et al. Impact of ENSO 2016–17 on regional climate and malaria vector dynamics in Tanzania. Environ. Res. Lett. 20, 20 (2019).
Kessler, S. & Guerin, P. M. Responses of Anopheles gambiae, Anopheles stephensi, Aedes aegypti, and Culex pipiens mosquitoes (Diptera: Culicidae) to cool and humid refugium conditions. J. Vector Ecol. https://doi.org/10.3376/1081-1710(2008)33[145:roagas]2.0.co;2 (2008).
Chaccour, C. & Killeen, G. F. Mind the gap: Residual malaria transmission, veterinary endectocides and livestock as targets for malaria vector control. Malar. J. 15, 24 (2016).
Lyimo, I. N., Kessy, S. T., Mbina, K. F., Daraja, A. A. & Mnyone, L. L. Ivermectin-treated cattle reduces blood digestion, egg production and survival of a free-living population of Anopheles arabiensis under semi-field condition in south-eastern Tanzania. Malar. J. https://doi.org/10.1186/s12936-017-1885-x (2017).
Meza, F. C. et al. Mosquito electrocuting traps for directly measuring biting rates and host-preferences of Anopheles arabiensis and Anopheles funestus outdoors. Malar. J. 18, 83. https://doi.org/10.1186/s12936-019-2726-x (2019).
Iwashita, H. et al. Push by a net, pull by a cow: Can zooprophylaxis enhance the impact of insecticide treated bed nets on malaria control?. Parasit. Vectors 7, 52 (2014).
Tirados, I., Gibson, G., Young, S. & Torr, S. Are herders protected by their herds? An experimental analysis of zooprophylaxis against the malaria vector Anopheles arabiensis. Malar. J. 10, 68 (2011).
Donnelly, B., Berrang-Ford, L., Ross, N. A. & Michel, P. A systematic, realist review of zooprophylaxis for malaria control. Malar. J. 14, 313. https://doi.org/10.1186/s12936-015-0822-0 (2015).
Killeen, G. F. et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob. Health 2, e000211. https://doi.org/10.1136/bmjgh-2016-000211 (2017).
Ayala, D., Ullastres, A. & Gonzalez, J. Adaptation through chromosomal inversions in Anopheles. Front. Genet. https://doi.org/10.3389/fgene.2014.00129 (2014).
Carrasco, D. et al. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 34, 48–54. https://doi.org/10.1016/j.cois.2019.03.005 (2019).
Matowo, N. S. et al. Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania. Wellcome Open Res. 2, 20 (2017).
Okumu, F. et al. Comparative field evaluation of combinations of long-lasting insecticide treated nets and indoor residual spraying, relative to either method alone, for malaria prevention in an area where the main vector is Anopheles arabiensis. Parasit. Vectors 6, 46 (2013).
Briët, O. J. T. et al. Applications and limitations of Centers for Disease Control and Prevention miniature light traps for measuring biting densities of African malaria vector populations: A pooled-analysis of 13 comparisons with human landing catches. Malar. J. 14, 1–13. https://doi.org/10.1186/s12936-015-0761-9 (2015).
Clark, G. G., Seda, H. & Gubler, D. J. Use of the “CDC backpack aspirator” for surveillance of Aedes aegypti in San Juan, Puerto Rico. J. Am. Mosq. Control Assoc. 10, 119–124 (1994).
Kreppel, K. S. et al. Comparative evaluation of the Sticky-Resting-Box-Trap, the standardised resting-bucket-trap and indoor aspiration for sampling malaria vectors. Parasit. Vectors 8, 462. https://doi.org/10.1186/s13071-015-1066-0 (2015).
Allen, R., Pereira, L. S., Raes, D., & Smith, M. Crop evapotranspiration—guidelines for computing crop water requirements. Food and Agriculture Organization (FAO); United Nations, FAO, Irrigation and Drainage Paper 56 (1998).
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066. https://doi.org/10.1038/sdata.2015.66 (2015).
Scott, J., Brodgon, W. & Collins, F. Identification of single specimens of Anopheles gambiae complex by polymerase chain reaction. Am. J. Trop. Med. Hyg. 49, 520–529 (1993).
Kaindoa, E. W. et al. New evidence of mating swarms of the malaria vector, Anopheles arabiensis in Tanzania. Wellcome Open Res. 2, 88. https://doi.org/10.12688/wellcomeopenres.12458.1 (2017).
Lee, Y., Weakley, A. M., Nieman, C. C., Malvick, J. & Lanzaro, G. C. A multi-detection assay for malaria transmitting mosquitoes. J. Vis. Exp. https://doi.org/10.3791/52385 (2015).
Cameron, A. C. & Trivedi, P. K. Regression-based tests for overdispersion in the Poisson model. J. Econom. 46, 347–364. https://doi.org/10.1016/0304-4076(90)90014-K (1990).
R-Core-Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).
Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. Linear and nonlinear mixed effects models. R Packag. Vers. 3, 57 (2007).
Brooks, M. E. et al. Modeling zero-inflated count data with glmmTMB. BioRxiv 132753, 20 (2017).
Source: Ecology - nature.com