in

The carbon opportunity cost of animal-sourced food production on land

  • 1.

    IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (WMO and UNEP, 2019).

  • 2.

    Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    CAS  Article  Google Scholar 

  • 3.

    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).

    CAS  Article  Google Scholar 

  • 4.

    West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    CAS  Article  Google Scholar 

  • 5.

    Shepon, A., Eshel, G., Noor, E. & Milo, R. The opportunity cost of animal based diets exceeds all food losses. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1713820115 (2018).

  • 6.

    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 992, 987–992 (2018).

    Article  Google Scholar 

  • 7.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    CAS  Article  Google Scholar 

  • 8.

    Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

    Article  Google Scholar 

  • 9.

    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).

    Article  Google Scholar 

  • 10.

    Batchelor, J. L., Ripple, W. J., Wilson, T. M. & Painter, L. E. Restoration of riparian areas following the removal of cattle in the northwestern great basin. Environ. Manage. 55, 930–942 (2014).

    Article  Google Scholar 

  • 11.

    Sitters, J., Kimuyu, D. M., Young, T. P., Claeys, P. & Olde Venterink, H. Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores. Nat. Sustain. 3, 360–366 (2020).

    Article  Google Scholar 

  • 12.

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (FAO, 2012).

  • 13.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 6736, 3–49 (2019).

    Google Scholar 

  • 14.

    IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • 15.

    Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. & Cao, L. Feed conversion efficiency in aquaculture: do we measure it correctly? Environ. Res. Lett. 13, 024017 (2018).

    Article  Google Scholar 

  • 16.

    Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. https://doi.org/10.1111/gcb.14321 (2018).

  • 17.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Article  Google Scholar 

  • 18.

    Randerson, J. T. et al. Multicentury changes in ocean and land contributions to the climate–carbon feedback. Glob. Biogeochem. Cycles 29, 744–759 (2015).

    CAS  Article  Google Scholar 

  • 19.

    Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

    Article  Google Scholar 

  • 20.

    Schmidinger, K. & Stehfest, E. Including CO2 implications of land occupation in LCAs-method and example for livestock products. Int. J. Life Cycle Assess. 17, 962–972 (2012).

    CAS  Article  Google Scholar 

  • 21.

    Stehfest, E. et al. Climate benefits of changing diet. Clim. Change 95, 83–102 (2009).

    CAS  Article  Google Scholar 

  • 22.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

    Article  Google Scholar 

  • 23.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    Article  Google Scholar 

  • 24.

    Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    Article  Google Scholar 

  • 25.

    Bouwman, A. F., Van der Hoek, K. W., Eickhout, B. & Soenario, I. Exploring changes in world ruminant production systems. Agric. Syst. 84, 121–153 (2005).

    Article  Google Scholar 

  • 26.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  Google Scholar 

  • 27.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    CAS  Article  Google Scholar 

  • 28.

    Erb, K. H. et al. Biomass turnover time in terrestrial ecosystems halved by land use. Nat. Geosci. 9, 674–678 (2016).

    CAS  Article  Google Scholar 

  • 29.

    Fetzel, T. et al. Quantification of uncertainties in global grazing systems assessment. Glob. Biogeochem. Cycles 31, 1089–1102 (2017).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

    Assessing the effect of wind farms in fauna with a mathematical model