in

Role of C4 carbon fixation in Ulva prolifera, the macroalga responsible for the world’s largest green tides

  • 1.

    Raven, J. A. Carbon dioxide fixation. in Algal Physiology and Biochemistry (ed Stewart, W. D. P.) 434–455 (Blackwell Scientific Publications, Oxford, 1974).

  • 2.

    Cooper, T. G., Filmer, D., Wishnick, M. & Lane, M. D. The active species of “CO2” utilized by ribulose diphosphate carboxylase. J. Biol. Chem. 244, 1081–1083 (1969).

    CAS  PubMed  Google Scholar 

  • 3.

    Badger, M. R. et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071 (1998).

    CAS  Google Scholar 

  • 4.

    Burkhardt, S., Amoroso, G., Riebesell, U. & Sültemeyerl, D. CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46, 1378–1391 (2001).

    CAS  Article  Google Scholar 

  • 5.

    Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann. Rev. Plant Biol. 56, 99–131 (2005).

    CAS  Article  Google Scholar 

  • 6.

    Reiskind, J. B. & Bowes, G. The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc. Natl Acad. Sci. USA 88, 2883–2887 (1991).

    CAS  Article  Google Scholar 

  • 7.

    Reinfelder, J. R., Kraepiel, A. M. L. & Morel, F. M. M. Unicellular C4 photosynthesis in a marine diatom. Nature 407, 996–999 (2000).

    CAS  Article  Google Scholar 

  • 8.

    Reinfelder, J. R., Milligan, A. J. & Morel, F. M. M. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol. 135, 2106–2111 (2004).

    CAS  Article  Google Scholar 

  • 9.

    Shao, H. et al. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. J. Exp. Bot. 68, 3985–3995 (2017).

    CAS  Article  Google Scholar 

  • 10.

    Han, S. et al. Structural basis for C4 photosynthesis without Kranz anatomy in leaves of the submerged freshwater plant Ottelia alismoides. Ann. Bot. 125, 869–879 (2020).

    Article  Google Scholar 

  • 11.

    Liu, D., Keesing, J. K., Xing, Q. & Shi, P. Worldʼs largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Poll. Bull. 58, 888–895 (2009).

    CAS  Article  Google Scholar 

  • 12.

    Keesing, J. K., Liu, D. Y., Fearns, P. & Garcia, R. Inter-and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China. Mar. Poll. Bull. 62, 1169–1182 (2011).

    CAS  Article  Google Scholar 

  • 13.

    Liu, D. et al. The worldʼs largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar. Coast. Shelf Sci. 129, 2–10 (2013).

    CAS  Article  Google Scholar 

  • 14.

    Zhang, J. H., Kim, J. K., Yarish, C. & He, P. The expansion of Ulva prolifera O.F. Müller macroalgal blooms in the Yellow Sea, PR China, through asexual reproduction. Mar. Poll. Bull. 104, 101–106 (2016).

    CAS  Article  Google Scholar 

  • 15.

    Xu, J. et al. Evidence of coexistence of C3 and C4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera. PLoS ONE 7, e37438 (2012).

    CAS  Article  Google Scholar 

  • 16.

    Valiela, I., Liu, D., Lloret, J., Chenoweth, K. & Hanacek, D. Stable isotopic evidence of nitrogen sources and C4 metabolism driving the worldʼs largest macroalgal green tides in the Yellow Sea. Sci. Rep. 8, 17437 (2018).

    Article  Google Scholar 

  • 17.

    Hatch, M. D. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta Rev. Bioenerg. 895, 81–106 (1987).

    CAS  Article  Google Scholar 

  • 18.

    Haimovich-Dayan, M. et al. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. N. Phytol. 197, 177–185 (2013).

    CAS  Article  Google Scholar 

  • 19.

    OʼLeary, M. H. Carbon isotopes in photosynthesis. BioScience 38, 328–336 (1988).

    Article  Google Scholar 

  • 20.

    Fry, B. 13C/12C fractionation by marine diatoms. Mar. Ecol. Prog. Ser. 134, 283–294 (1996).

    CAS  Article  Google Scholar 

  • 21.

    Carvalho, M. C. & Eyre, B. D. Carbon stable isotope discrimination during respiration in three seaweed species. Mar. Ecol. Prog. Ser. 437, 41–49 (2011).

    CAS  Article  Google Scholar 

  • 22.

    Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).

    CAS  Article  Google Scholar 

  • 23.

    Carvalho, M. C., Hayashizaki, K. & Ogawa, H. Short-term measurement of carbon stable isotope discrimination in photosynthesis and respiration by aquatic macrophytes, with marine macroalgal examples. J. Phycol. 45, 761–770 (2009).

    Article  Google Scholar 

  • 24.

    Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos. Trans. Roy. Soc. B 367, 493–507 (2012).

    CAS  Article  Google Scholar 

  • 25.

    Roberts, K., Granum, E., Leegood, R. C. & Raven, J. A. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental control. Plant Physiol. 145, 230–235 (2007).

    CAS  Article  Google Scholar 

  • 26.

    Roberts, K., Granum, E., Leegood, R. C. & Raven, J. A. Carbon acquisition by diatoms. Photosynth. Res. 93, 79–88 (2007).

    CAS  Article  Google Scholar 

  • 27.

    Beardall, J. & Giordano, M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct. Plant Biol. 29, 335–347 (2002).

    CAS  Article  Google Scholar 

  • 28.

    Palmqvist, K., Yu, J. W. & Badger, M. R. Carbonic anhydrase activity and inorganic carbon fluxes in low- and high-Ci cells of Chlamydomonas reinhardtü and Scenedesmus obliquus. Physiol. Plant. 90, 537–547 (1994).

    CAS  Article  Google Scholar 

  • 29.

    Reinfelder, J. R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann. Rev. Mar. Sci. 3, 291–315 (2011).

    Article  Google Scholar 

  • 30.

    Beardall, J. Effects of photon flux density on the CO2-concentrating mechanism of the cyanobacterium Anabaena variabilis. J. Plankton Res. 13, 133–141 (1991).

    Google Scholar 

  • 31.

    Kargul, J. & Barber, J. Photosynthetic acclimation: structural reorganization of light harvesting antenna-role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J. 275, 1056–1068 (2008).

    CAS  Article  Google Scholar 

  • 32.

    Zhao, X., Tang, X., Zhang, H., Qu, T. & Wang, Y. Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes. Plant Physiol. Biochem. 107, 116–125 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Xu, J. & Gao, K. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 160, 1762–1769 (2012).

    CAS  Article  Google Scholar 

  • 34.

    Li, J., Sun, X. & Zheng, S. In situ study on photosynthetic characteristics of phytoplankton in the Yellow Sea and East China Sea in summer 2013. J. Mar. Syst. 160, 94–106 (2016).

    Article  Google Scholar 

  • 35.

    Qin, B. Y., Tao, Z., Li, Z. W. & Yang, X. F. Seasonal changes and controlling factors of sea surface pCO2 in the Yellow Sea. IOP Conf. Ser. 17, 012025 (2014).

    Article  Google Scholar 

  • 36.

    Krause-Jensen, D., McGlathery, K., Rysgaard, S. & Christensen, P. B. Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability. Mar. Ecol. Prog. Ser. 134, 207–216 (1996).

    Article  Google Scholar 

  • 37.

    Keesing, J. K., Liu, D., Shi, Y. & Wang, Y. Abiotic factors influencing biomass accumulation of green tide causing Ulva spp. on Pyropia culture rafts in the Yellow Sea, China. Mar. Poll. Bull. 105, 88–97 (2016).

    CAS  Article  Google Scholar 

  • 38.

    Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2System Calculations. ORNL/CDIAC−105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 2006).

  • 39.

    Wilbur, K. M. & Anderson, N. G. Electronic and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154 (1948).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

    Assessing the effect of wind farms in fauna with a mathematical model