in

Environmental filtering and spillover explain multi-species edge responses across agricultural boundaries in a biosphere reserve

  • 1.

    Vandermeer, J. & Perfecto, I. Tropical conservation and grassroots social movements: ecological theory and social justice. Bull. Ecol. Soc. Am. 88, 171–175 (2007).

    Google Scholar 

  • 2.

    Singer, B. How useful is the landscape approach? In Proceedings of the 2nd world heritage forests meeting (9–11 March 2005) (2007).

  • 3.

    Wiens, J. A. (2002). Central concepts and issues of landscape ecology. In Gutzwiller, K. J. (Eds.), Applying landscape ecology in biological conservation (pp. 3–21). Springer.

  • 4.

    Schonewald-Cox, C. M. & Bayless, J. W. The boundary model: a geographical analysis of design and conservation of nature reserves. Biol. Conserv. 38, 305–322 (1986).

    Google Scholar 

  • 5.

    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).

    PubMed  Google Scholar 

  • 6.

    Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B. & Smith, A. L. Conceptual domain of the matrix in fragmented landscapes. Trends Ecol. Evol. 28, 605–613 (2013).

    PubMed  Google Scholar 

  • 7.

    Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2010).

    Google Scholar 

  • 8.

    Campbell, R. E., Harding, J. S., Ewers, R. M., Thorpe, S. & Didham, R. K. Production land use alters edge response functions in remnant forest invertebrate communities. Ecol. Appl. 21, 3147–3161 (2011).

    Google Scholar 

  • 9.

    Tscharntke, T., Rand, T. A. & Bianchi, F. J. J. A. The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann. Zool. Fennici 42, 421–432 (2005).

    Google Scholar 

  • 10.

    Ng, K., Barton, P. S., Macfadyen, S., Lindenmayer, D. B. & Driscoll, D. A. Beetle’s responses to edges in fragmented landscapes are driven by adjacent farmland use, season and cross-habitat movement. Landsc. Ecol. 33, 109–125 (2018).

    Google Scholar 

  • 11.

    Ruffell, J. & Didham, R. K. Towards a better mechanistic understanding of edge effects. Landsc. Ecol. 31, 2205–2213 (2016).

    Google Scholar 

  • 12.

    Murcia, C. Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).

    CAS  PubMed  Google Scholar 

  • 13.

    Ruffel, J. et al. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus), a globally invasive nest predator, by altering vegetation structure. PLoS ONE 9, e113098 (2014).

    ADS  Google Scholar 

  • 14.

    Mairota, P. et al. Very high resolution earth observation features for testing the direct and indirect effects of landscape structure on local habitat quality. Int. J. Appl. Earth Obs. Geoinf. 34, 96–102 (2015).

    ADS  Google Scholar 

  • 15.

    Laurance, W. F., Didham, R. K. & Power, M. E. Ecological boundaries: a search for synthesis. Trends Ecol. Evol. 16, 70–71 (2001).

    Google Scholar 

  • 16.

    Perfecto, I. & Vandermeer, J. Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in southern mexico. Conserv. Biol. 16, 174–182 (2002).

    Google Scholar 

  • 17.

    Kupfer, J. A., Malanson, G. P. & Franklin, S. B. Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob. Ecol. Biogeogr. 15, 8–20 (2006).

    Google Scholar 

  • 18.

    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Google Scholar 

  • 19.

    Ries, L. & Debinski, D. M. Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J. Anim. Ecol. 70, 840–852 (2001).

    Google Scholar 

  • 20.

    de Lange, H. J., Lahr, J., Brouwer, J. H. D. & Faber, J. H. Review of available evidence regarding the vulnerability of off-crop non-target arthropod communities in comparison to in-crop non-target arthropod communities. Support. Publ. EN-348 (2012).

  • 21.

    Ppr, E. F. S. A. Scientific opinion addressing the rate of the science on risk assessment of plant protection products for non-target arthropods. EFSA J. 13, 3996 (2015).

    Google Scholar 

  • 22.

    Ries, L. & Sisk, T. D. Butterfly edge effects are predicted by a simple model in a complex landscape. Oecologia 156, 75–86 (2008).

    ADS  PubMed  Google Scholar 

  • 23.

    Ries, L., Murphy, S. M., Wimp, G. M. & Fletcher, R. J. Closing persistent gaps in knowledge about edge ecology. Curr. Landsc. Ecol. Rep. 2, 30–41 (2017).

    Google Scholar 

  • 24.

    Wilson, D. S. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73, 1984–2000 (1992).

    Google Scholar 

  • 25.

    Ries, L., Fletcher, R. J. J., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522 (2004).

    Google Scholar 

  • 26.

    Ries, L. & Sisk, T. D. What is an edge species? The implications of sensitivity to habitat edges. Oikos 119, 1636–1642 (2010).

    Google Scholar 

  • 27.

    Pandit, S. N., Kolasa, J., Cottenie, K., Andit, S. H. N. P. & Olasa, J. U. K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262 (2009).

    PubMed  Google Scholar 

  • 28.

    van Schalkwyk, J., Pryke, J. S. & Samways, M. J. Contribution of common vs. rare species to species diversity patterns in conservation corridors. Ecol. Indic. 104, 279–288 (2019).

    Google Scholar 

  • 29.

    Kotze, D. J. & Samways, M. J. No general edge effects for invertebrates at Afromontane forest/grassland ecotones. Biodivers. Conserv. 10, 443–466 (2001).

    Google Scholar 

  • 30.

    Rand, T. A., Tylianakis, J. M. & Tscharntke, T. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol. Lett. 9, 603–614 (2006).

    PubMed  Google Scholar 

  • 31.

    Winegardner, A. K., Jones, B. K., Ng, I. S. Y., Siqueira, T. & Cottenie, K. The terminology of metacommunity ecology. Trends Ecol. Evol. 27, 253–254 (2012).

    PubMed  Google Scholar 

  • 32.

    Lanta, V., Nordahl, K., Gilbert, S., Söderman, G. & Rinne, V. Biotic filtering and mass effects in small shrub patches: is arthropod community structure predictable based on the quality of the vegetation?. Ecol. Entomol. 43, 234–244 (2018).

    Google Scholar 

  • 33.

    Duelli, P. & Obrist, M. K. Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl. Ecol. 4, 129–138 (2003).

    Google Scholar 

  • 34.

    Katayama, N., Bouam, I., Koshida, C. & Baba, Y. G. Biodiversity and yield under different land-use types in orchard/vineyard landscapes: a meta-analysis. Biol. Conserv. 229, 125–133 (2019).

    Google Scholar 

  • 35.

    Lucey, J. M. et al. Tropical forest fragments contribute to species richness in adjacent oil palm plantations. Biol. Conserv. 169, 268–276 (2014).

    Google Scholar 

  • 36.

    Vink, N. & Tregurtha, N. Agriculture and mariculture first paper: structure, performance and future prospects—an overview (Department of Agriculture, Forestry, and Fisheries, Cape Town, 2007).

    Google Scholar 

  • 37.

    Thorpe, P. T., Pryke, J. S. & Samways, M. J. Review of ecological and conservation perspectives on future options for arthropod management in Cape Floristic Region pome fruit orchards. Afr. Entomol. 24, 279–306 (2016).

    Google Scholar 

  • 38.

    van Schalkwyk, J., Pryke, J. S., Samways, M. J. & Gaigher, R. Complementary and protection value of a Biosphere Reserve buffer zone for increasing local representativeness of ground-living arthropods. Biol. Conserv. 239, 108292 (2019).

    Google Scholar 

  • 39.

    Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783 (1987).

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  • 40.

    Oksanen, J. et al. vegan: community ecology package (2019).

  • 41.

    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).

  • 42.

    De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).

    Google Scholar 

  • 43.

    Tichý, L. & Chytrý, M. Statistical determination of diagnostic species for site groups of unequal sample size. J. Veg. Sci. 17, 809–818 (2006).

    Google Scholar 

  • 44.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 45.

    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).

    ADS  PubMed  Google Scholar 

  • 46.

    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).

    Google Scholar 

  • 47.

    Blanchet, G., Legendre, P. & Borcard, D. Forward selection of spatial explanatory variables. Ecology 89, 2623–2632 (2008).

    PubMed  Google Scholar 

  • 48.

    Bauman, D., Drouet, T., Fortin, M.-J. & Dray, S. Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 99, 2159–2166 (2018).

    PubMed  Google Scholar 

  • 49.

    Wagner, H. H. Direct multi-scale ordination with canonical correspondence analysis. Ecology 85, 342–351 (2004).

    Google Scholar 

  • 50.

    Dray, S. et al. adespatial: multivariate multiscale spatial analysis (2019).

  • 51.

    UNESCO. Biosphere reserves—learning sites for sustainable development (2017). https://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/. Accessed 2 March 2020.

  • 52.

    Kammerer, M. A., Biddinger, D. J., Rajotte, E. G. & Mortensen, D. A. Local plant diversity across multiple habitats supports a diverse wild bee community in pennsylvania apple orchards. Environ. Entomol. 45, 32–38 (2016).

    PubMed  Google Scholar 

  • 53.

    Witt, A. B. R. & Samways, M. J. Influence of agricultural land transformation and pest management practices on the arthropod diversity of a biodiversity hotspot, the Cape Floristic Region, South Africa. Afr. Entomol. 12, 89–95 (2004).

    Google Scholar 

  • 54.

    Adu-Acheampong, S., Bazelet, C. S. & Samways, M. J. Extent to which an agricultural mosaic supports endemic species-rich grasshopper assemblages in the Cape Floristic Region biodiversity hotspot. Agric. Ecosyst. Environ. 227, 52–60 (2016).

    Google Scholar 

  • 55.

    Magura, T. Carabids and forest edge: spatial pattern and edge effect. For. Ecol. Manag. 157, 23–37 (2002).

    Google Scholar 

  • 56.

    Kautz, M., Schopf, R. & Ohser, J. The ‘sun-effect’: microclimatic alterations predispose forest edges to bark beetle infestations. Eur. J. For. Res. 132, 453–465 (2013).

    Google Scholar 

  • 57.

    Greenslade, P. Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). J. Anim. Ecol. 33, 301–310 (1964).

    Google Scholar 

  • 58.

    Gascon, C. et al. Matrix habitat and species richness in tropical forest remnants. Biol. Conserv. 91, 223–229 (1999).

    Google Scholar 

  • 59.

    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2017).

    Google Scholar 

  • 60.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science (80-) 344, 296–299 (2014).

    ADS  CAS  Google Scholar 

  • 61.

    Epstein, D. L., Zack, R. S., Brunner, J. F., Gut, L. & Brown, J. J. Effects of broad-spectrum insecticides on epigeal arthropod biodiversity in Pacific Northwest apple orchards. Environ. Entomol. 29, 340–348 (2000).

    CAS  Google Scholar 

  • 62.

    Markó, V. & Kádár, F. Effects of different insecticide disturbance levels and weed patterns on carabid beetle assemblages. Acta Phytopathol. Entomol. Hungarica 40, 111–143 (2005).

    Google Scholar 

  • 63.

    Ries, L. & Sisk, T. D. A predictive model of edge effects. Ecology 85, 2917–2926 (2004).

    Google Scholar 

  • 64.

    Gerlach, J., Samways, M. & Pryke, J. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J. Insect Conserv. 17, 831–850 (2013).

    Google Scholar 

  • 65.

    Nuyttens, D. et al. Drift from field crop sprayers using an integrated approach: results of a five-year study. Trans. ASABE 54, 403–408 (2011).

    Google Scholar 

  • 66.

    Zaady, E., Katra, I., Shuker, S., Knoll, Y. & Shlomo, S. Tree belts for decreasing aeolian dust-carried pesticides from cultivated areas. Geosciences 8, 286 (2018).

    ADS  Google Scholar 

  • 67.

    Blitzer, E. J. et al. Spillover of functionally important organisms between managed and natural habitats. Agric. Ecosyst. Environ. 146, 34–43 (2012).

    Google Scholar 

  • 68.

    Leibold, M. A., Chase, J. M. & Ernest, S. K. M. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).

    PubMed  Google Scholar 

  • 69.

    With, K. A. The landscape ecology of invasive spread. Conserv. Biol. 16, 1192–1203 (2002).

    Google Scholar 

  • 70.

    Hickey, M. B. C. & Doran, B. A review of the efficiency of buffer strips for the maintenance and enhancement of riparian ecosystems. Water Qual. Res. J. Canada 39, 311–317 (2004).

    Google Scholar 

  • 71.

    Vought, L. B. M. & Lacoursièr, J. O. Restoration of streams in the agricultural landscapes. In Restoration of Lakes, Streams, Floodplains, and Bogs in Europe Vol. 3 (ed. Eiseltová, M.) (Springer, Berlin, 2010).

    Google Scholar 

  • 72.

    Samways, M. J., Osborn, R. & Carliel, F. Effect of a highway on ant (Hymenoptera: Formicidae) species composition and abundance, with a recommendation for roadside verge width. Biodivers. Conserv. 6, 903–913 (1997).

    Google Scholar 

  • 73.

    Nyhus, P. J. & Adams, M. S. Biosphere Reserves of the World—Principles and Practice (University of Wisconsin, Madison, 1995).

    Google Scholar 

  • 74.

    UNESCO. Management Manual for UNESCO Biosphere Reserves in Africa. (2015).

  • 75.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).

    Google Scholar 

  • 76.

    Mehring, M. & Stoll-Kleemann, S. How effective is the buffer zone? Linking institutional processes with satellite images from a case study in the Lore Lindu forest biosphere reserve, Indonesia. Ecol. Soc. 16, 3 (2011).

    Google Scholar 

  • 77.

    Badejo, M. A. & Ola-Adams, B. A. Abundance and diversity of soil mites of fragmented habitats in a biopshere reserve in southern Nigeria. Pesqui. Agropecuária Bras. 35, 2121–2128 (2000).

    Google Scholar 

  • 78.

    Dutta, P. et al. Mosquito biodiversity of Dibru-Saikhowa biosphere reserve in Assem, India. J. Environ. Biol. 31, 695–699 (2010).

    CAS  PubMed  Google Scholar 

  • 79.

    González-Moreno, A., Bordera, S., Leirana-Alcocer, J., Delfín-González, H. & Ballina-Gómez, H. S. Explaining variations in the diversity of parasitoid assemblages in a biosphere reserve of Mexico: evidence from vegetation, land management and seasonality. Bull. Entomol. Res. 108, 602–615 (2018).

    PubMed  Google Scholar 

  • 80.

    McIntyre, S. & Barrett, G. W. Habitat variegation, an alternative to fragmentation. Conserv. Biol. 6, 146–147 (1992).

    Google Scholar 

  • 81.

    Ingham, D. S. & Samways, M. J. Application of fragmentation and variegation models to epigaeic invertebrates in South Africa. Conserv. Biol. 10, 1353–1358 (1996).

    Google Scholar 

  • 82.

    Guevara, S. & Laborde, J. The landscape approach: designing new reserves for protection of biological and cultural diversity in Latin America. Environ. Ethics 30, 251–262 (2008).

    Google Scholar 

  • 83.

    Brunckhorst, D. Building capital through bioregional planning and biosphere reserves. Ethics Sci. Environ. Polit. 1, 19–32 (2001).

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Ecological pest control fortifies agricultural growth in Asia–Pacific economies

    Velcro-like food sensor detects spoilage and contamination