in

Behavioral and trophic segregations help the Tahiti petrel to cope with the abundance of wedge-tailed shearwater when foraging in oligotrophic tropical waters

  • 1.

    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).

    Google Scholar 

  • 2.

    Navarro, J. et al. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8, e622897 (2013).

    Google Scholar 

  • 3.

    Dehnhard, N. et al. High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: generalist foraging as an adaptation to a highly variable environment?. J. Anim. Ecol. 89, 104–119 (2020).

    PubMed  Google Scholar 

  • 4.

    Longhurst, A. R. & Pauly, D. Ecology of Tropical Oceans (Academic Press, New York, 1987).

    Google Scholar 

  • 5.

    Weimerskirch, H. Are seabirds foraging for unpredictable resources?. Deep Res. Part II Top. Stud. Oceanogr. 54, 211–223 (2007).

    ADS  Google Scholar 

  • 6.

    McDuie, F., Weeks, S. J. & Congdon, B. C. Oceanographic drivers of near-colony seabird foraging site use in tropical marine systems. Mar. Ecol. Prog. Ser. 589, 209–225 (2018).

    ADS  Google Scholar 

  • 7.

    Grémillet, D. et al. Irreplaceable area extends marine conservation hotspot off Tunisia: insights from GPS-tracking Scopoli’s shearwaters from the largest seabird colony in the Mediterranean. Mar. Biol. 161, 2669–2680 (2014).

    Google Scholar 

  • 8.

    Weimerskirch, H. et al. At-sea movements of wedge-tailed shearwaters during and outside the breeding season from four colonies in New Caledonia. Mar. Ecol. Prog. Ser. 663, 225–238 (2020).

    ADS  Google Scholar 

  • 9.

    de Grissac, S., Börger, L., Guitteaud, A. & Weimerskirch, H. Contrasting movement strategies among juvenile albatrosses and petrels. Sci. Rep. 6, 26103 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Mott, R. & Clarke, R. H. Systematic review of geographic biases in the collection of at-sea distribution data for seabirds. Emu 118, 235–246 (2018).

    Google Scholar 

  • 11.

    Cherel, Y. et al. Resource partitioning within a tropical seabird community: new information from stable isotopes. Mar. Ecol. Prog. Ser. 366, 281–291 (2008).

    ADS  CAS  Google Scholar 

  • 12.

    France, R. L. & Peters, R. H. Ecosystem differences in the trophic enrichment of13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 54, 1255–1258 (1997).

    Google Scholar 

  • 13.

    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).

    ADS  CAS  Google Scholar 

  • 14.

    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotope ecology. Front. Ecol. Environ. 5, 429–436 (2007).

    Google Scholar 

  • 15.

    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–10012 (2004).

    Google Scholar 

  • 16.

    Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl. Acad. Sci. USA 104, 10075–10079 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 11, 627–641 (2002).

    CAS  PubMed  Google Scholar 

  • 18.

    Komura, T., Ando, H., Horikoshi, K., Suzuki, H. & Isagi, Y. DNA barcoding reveals seasonal shifts in diet and consumption of deep-sea fishes in wedge-tailed shearwaters. PLoS ONE 13, e0195385 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Carreiro, A. R. et al. Metabarcoding, stables isotopes, and tracking: unraveling the trophic ecology of a winter-breeding storm petrel (Hydrobates castro) with a multimethod approach. Mar. Biol. 167, 1–13 (2020).

    Google Scholar 

  • 20.

    Alonso, H. et al. An holistic ecological analysis of the diet of Cory’s shearwaters using prey morphological characters and DNA barcoding. Mol. Ecol. 23, 3719–3733 (2014).

    CAS  PubMed  Google Scholar 

  • 21.

    del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World. Ostrich to Ducks Vol. 1 (Lynx Editions, Barcelona, 1992).

    Google Scholar 

  • 22.

    Brooke, M. Albatrosses and Petrels Across the World (Oxford University Press, Oxford, 2004).

    Google Scholar 

  • 23.

    McDuie, F., Weeks, S. J., Miller, M. G. R. & Congdon, B. C. Breeding tropical shearwaters use distant foraging sites when self-provisioning. Mar. Ornithol. 43, 123–129 (2015).

    Google Scholar 

  • 24.

    Congdon, B. C., Krockenberger, A. K. & Smithers, B. V. Dual-foraging and co-ordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar. Ecol. Prog. Ser. 301, 293–301 (2005).

    ADS  Google Scholar 

  • 25.

    Furness, R. W. & Birkhead, T. R. Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311, 655–656 (1984).

    ADS  Google Scholar 

  • 26.

    Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Baduini, C. L. Parental provisioning patterns of wedge-tailed shearwaters and their relation to chick body condition. Condor 104, 823 (2002).

    Google Scholar 

  • 28.

    Cecere, J. G., Calabrese, L., Rocamora, G. & Catoni, C. Movement patterns and habitat selection of wedge-tailed shearwaters (Puffinus pacificus) breeding at Aride Island, Seychelles. Waterbirds 36, 432–437 (2013).

    Google Scholar 

  • 29.

    Peck, D. R. & Congdon, B. C. Colony-specific foraging behaviour and co-ordinated divergence of chick development in the wedge-tailed shearwater Puffinus pacificus. Mar. Ecol. Prog. Ser. 299, 289–296 (2005).

    ADS  Google Scholar 

  • 30.

    Jaquemet, S., Le Corre, M. & Weimerskirch, H. Seabird community structure in a coastal tropical environment: importance of natural factors and fish aggregating devices (FADs). Mar. Ecol. Prog. Ser. 268, 281–292 (2004).

    ADS  Google Scholar 

  • 31.

    Miller, M. G. R., Carlile, N., Phillips, J. S., Mcduie, F. & Congdon, B. C. Importance of tropical tuna for seabird foraging over a marine productivity gradient. Mar. Ecol. Prog. Ser. 586, 233–249 (2018).

    ADS  Google Scholar 

  • 32.

    Spear, L. B., Ainley, D. G. & Walker, W. A. Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Stud. Avian Biol. 35, 1–99 (2007).

    Google Scholar 

  • 33.

    Burger, A. E. Diving depths of shearwaters. Auk 118, 755–759 (2001).

    Google Scholar 

  • 34.

    Peck, D. R. & Congdon, B. C. Sex-specific chick provisioning and diving behaviour in the wedge-tailed shearwater Puffinus pacificus. J. Avian Biol. 37, 245–251 (2006).

    Google Scholar 

  • 35.

    IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-1. https://www.iucnredlist.org. Downloaded on 19 March 2020.

  • 36.

    Villard, P., Dano, S. & Bretagnolle, V. Morphometrics and the breeding biology of the Tahiti petrel Pseudobulweria rostrata. Ibis 148, 285–291 (2006).

    Google Scholar 

  • 37.

    Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. (2020).

  • 38.

    Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west pacific. Deep Res. Part II Top. Stud. Oceanogr. 113, 125–144 (2015).

    ADS  Google Scholar 

  • 39.

    Bretagnolle, V. Le Pétrel de la Chaîne Pterodroma (leucoptera) caledonica: Statut et Menaces. Unpubl. Rep. Prov. Sud, Nouméa, New Caledonia (2001).

  • 40.

    Pandolfi, M. & Bretagnolle, V. Seabirds of the Southern Lagoon of New Caledonia; distribution, abundance and threats. Waterbirds 25, 202–214 (2002).

    Google Scholar 

  • 41.

    QGIS Development Team. QGIS geographic information system. Open Source Geospatial Foundation Project (2018).

  • 42.

    Phillips, R. A., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on albatrosses and petrels. Auk 120, 1082–1090 (2003).

    Google Scholar 

  • 43.

    Vandenabeele, S. P. et al. Excess baggage for birds: inappropriate placement of tags on gannets changes flight patterns. PLoS ONE 9, e92657 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).

    Google Scholar 

  • 45.

    Michael, A., Sumner, D., Luque, S. & Fischbach, A. Trip : Tools for the Analysis of Animal Track Data. R package version 1.5.0. (2016).

  • 46.

    Garriga, J., Palmer, J. R. B., Oltra, A. & Bartumeus, F. Expectation–maximization binary clustering for behavioural annotation. PLoS ONE 11, e0151984 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    de Grissac, S., Bartumeus, F., Cox, S. L. & Weimerskirch, H. Early-life foraging: behavioral responses of newly fledged albatrosses to environmental conditions. Ecol. Evol. 7, 6766–6778 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Bennison, A. et al. Search and foraging behaviors from movement data: a comparison of methods. Ecol. Evol. 8, 13–24 (2018).

    PubMed  Google Scholar 

  • 49.

    Clay, T. A. et al. Divergent foraging strategies during incubation of an unusually wide-ranging seabird, the Murphy’s petrel. Mar. Biol. 166, 8 (2019).

    PubMed  Google Scholar 

  • 50.

    Mendez, L., Prudor, A. & Weimerskirch, H. Ontogeny of foraging behaviour in juvenile red-footed boobies (Sula sula). Sci. Rep. 7, 13886 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Ravache, A. et al. Flying to the moon: lunar cycle influences trip duration and nocturnal foraging behavior of the wedge-tailed shearwater Ardenna pacifica. J. Exp. Mar. Biol. Ecol. 525, 151322 (2020).

    Google Scholar 

  • 52.

    Lund, U. et al. R package ‘circular’: circular Statistics (version 0.4-93). R Packag (2017).

  • 53.

    Calenge, C. The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).

    Google Scholar 

  • 54.

    Hedd, A. et al. Foraging areas, offshore habitat use and colony overlap by incubating leach’s storm-petrels Oceanodroma leucorhoa in the Northwest Atlantic. PLoS ONE 13, 1–18 (2018).

    Google Scholar 

  • 55.

    Bivand, R. & Rundel, C. Interface to Geometry Engine – Open Source (‘GEOS’) (2018).

  • 56.

    Hobson, K. A. & Clark, R. G. Turnover of 13 C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110, 638–641 (1993).

    Google Scholar 

  • 57.

    Jaeger, A., Lecomte, V. J., Weimerskirch, H., Richard, P. & Cherel, Y. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators’ foraging areas in the Southern Ocean. Rapid Commun. Mass Spectrom. 24, 3456–3460 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 58.

    Oksanen, J. et al. Package vegan. R Packag ver (2013).

  • 59.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed  Google Scholar 

  • 60.

    Ceia, F. R., Paiva, V. H., Garthe, S., Marques, J. C. & Ramos, J. A. Can variations in the spatial distribution at sea and isotopic niche width be associated with consistency in the isotopic niche of a pelagic seabird species?. Mar. Biol. 161, 1861–1872 (2014).

    Google Scholar 

  • 61.

    Votier, S. C. et al. Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J. Appl. Ecol. 47, 487–497 (2010).

    Google Scholar 

  • 62.

    Bearhop, S. et al. Stable isotopes indicate sex-specific and longer-term individual foraging specialisation in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164 (2006).

    ADS  Google Scholar 

  • 63.

    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Jarman, S. N., Redd, K. S. & Gales, N. J. Group-specific primers for amplifying DNA sequences that identify Amphipoda, Cephalopoda, Echinodermata, Gastropoda, Isopoda, Ostracoda and Thoracica. Mol. Ecol. Notes 6, 268–271 (2006).

    CAS  Google Scholar 

  • 65.

    Braley, M., Goldsworthy, S. D., Page, B., Steer, M. & Austin, J. J. Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Mol. Ecol. Resour. 10, 466–474 (2010).

    CAS  PubMed  Google Scholar 

  • 66.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

    CAS  PubMed  Google Scholar 

  • 68.

    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).

    PubMed  Google Scholar 

  • 69.

    Froese, R. & Pauly, D. Fishbase. World Wide Web electronic publication. FishBase (2019).

  • 70.

    Palomares, M. L. D. & Pauly, D. SeaLifeBase. World Wide Web Electronic Publication. www.sealifebase.org, version (2014).

  • 71.

    Wickham, H. tidyverse: Easily Install and Load ‘Tidyverse’ Packages. R package version 1.0.0 (2016).

  • 72.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).

    Google Scholar 

  • 73.

    Baduini, C. L. & Hyrenbach, K. D. Biogeography of procellariiform foraging strategies: does ocean productivity influence provisioning?. Mar. Ornithol. 31, 101–112 (2003).

    Google Scholar 

  • 74.

    Weimerskirch, H. et al. Alternate long and short foraging trips in pelagic seabird parents. Anim. Behav. 47, 472–476 (1994).

    Google Scholar 

  • 75.

    Granadeiro, J., Nunes, M., Silva, M. & Furness, R. Flexible foraging strategy of Cory’s shearwater, Calonectris diomedea, during the chick-rearing period. Anim. Behav. 56, 1169–1176 (1998).

    CAS  PubMed  Google Scholar 

  • 76.

    Kareiva, P. & Odell, G. Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987).

    Google Scholar 

  • 77.

    Jennings, S., Pinnegar, J. K., Polunin, N. V. C. & Warr, K. J. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser. 226, 77–85 (2002).

    ADS  Google Scholar 

  • 78.

    Clua, É & Grosvalet, F. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).

    Google Scholar 

  • 79.

    Roger, C. Relationships among yellowfin and skipjack tuna, their prey-fish and plankton. Fish. Oceanogr. 3, 133–141 (1994).

    Google Scholar 

  • 80.

    Choy, C. A., Popp, B. N., Hannides, C. C. S. & Drazen, J. C. Trophic structure and food resources of epipelagic and mesopelagic fishes in the north pacific subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 60, 1156–1171 (2015).

    ADS  Google Scholar 

  • 81.

    Lipinski, M. R. & Jackson, S. Surface-feeding on cephalopods by procellariiform seabirds in the southern Benguela region, South Africa. J. Zool. 218, 549–563 (1989).

    Google Scholar 

  • 82.

    Spear, L. B. & Ainley, D. G. Morphological differences relative to ecological segregation in petrels (family: Procellariidae) of the Southern Ocean And Tropical Pacific. Auk 115, 1017–1033 (1998).

    Google Scholar 

  • 83.

    Keenan, S. W. & DeBruyn, J. M. Changes to vertebrate tissue stable isotope (δ15N) composition during decomposition. Sci. Rep. 9, 1–12 (2019).

    Google Scholar 

  • 84.

    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

    MathSciNet  PubMed  Google Scholar 

  • 85.

    Mendez, L., Cotté, C., Prudor, A. & Weimerskirch, H. Variability in foraging behaviour of red-footed boobies nesting on Europa Island. Acta Oecol. 72, 87–97 (2016).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Effectiveness of protected areas in conserving tropical forest birds

    Did our early ancestors boil their food in hot springs?